Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-11T10:26:25.427Z Has data issue: false hasContentIssue false

Visible Light Photodiodes and Photovoltages from Detonation Nanodiamonds

Published online by Cambridge University Press:  09 February 2016

Bohuslav Rezek*
Affiliation:
Institute of Physics ASCR, Cukrovarnicka10, Prague 6, Czech Republic Faculty of Electrical Engineering, Czech Technical University, Technicka 2, Prague 6, Czech Republic
Stepan Stehlik
Affiliation:
Institute of Physics ASCR, Cukrovarnicka10, Prague 6, Czech Republic
Alexander Kromka
Affiliation:
Institute of Physics ASCR, Cukrovarnicka10, Prague 6, Czech Republic
Jean-Charles Arnault
Affiliation:
Diamond Sensors Laboratory, CEA LIST, F-91191 Gif sur Yvette, France
Martin Weis
Affiliation:
Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava, Slovakia
Jan Jakabovic
Affiliation:
Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava, Slovakia
*
*(Email: rezek@fzu.cz)
Get access

Abstract

Macroscopic and microscopic photovoltage characteristics of detonation nanodiamonds (DNDs) with distinct surface terminations are presented. Organic photodiodes are fabricated based on P3HT+DNDs mixture (50 wt%). We compare effect of hydrogen and oxygen termination of DNDs. Compared to photodiodes without DNDs the current-voltage characteristics of photodiodes with O-DNDs in dark and under AM 1.5 illumination show reduced dark current, and higher photocurrent and open circuit voltage. H-DNDs shunt the photodiodes, which is attributed to their surface conductivity. Kelvin probe force microscopy detects a reproducible photovoltage of around 5 mV generated by a green laser (532 nm) on both types of pristine DNDs. Thus although conductivity of H-DNDs may represent a problem for photodiodes, both types of DNDs alone can function as miniature energy conversion devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mochalin, V. N., Shenderova, O., Ho, D., and Gogotsi, Y., Nat. Nanotechnol. 7, 11 (2012).Google Scholar
Tisler, J., Balasubramanian, G., Naydenov, B., Kolesov, R., Grotz, B., Reuter, R., Boudou, J.-P., Curmi, P. A., Sennour, M., Thorel, A., Börsch, M., Aulenbacher, K., Erdmann, R., Hemmer, P. R., Jelezko, F., and Wrachtrup, J., ACS Nano 3, 1959 (2009).Google Scholar
Ho, D. and Ho, C.-M., Int. J. Smart Nano Mater. 1, 69 (2010).Google Scholar
Kozak, H., Remes, Z., Houdkova, J., Stehlik, S., Kromka, A., and Rezek, B., J. Nanoparticle Res. 15, 1 (2013).CrossRefGoogle Scholar
Rezek, B., Čermák, J., Kromka, A., Ledinský, M., Hubík, P., Mareš, J. J., Purkrt, A., Cimrová, V., Fejfar, A., and Kočka, J., Nanoscale Res. Lett. 6, 238 (2011).CrossRefGoogle Scholar
Galář, P., Čermák, J., Malý, P., Kromka, A., and Rezek, B., J. Appl. Phys. 116, 223103 (2014).Google Scholar
Nagata, A., Oku, T., Suzuki, A., Kikuchi, K., and Kikuchi, S., J. Ceram. Soc. Jpn. 118, 1006 (2010).Google Scholar
Girard, H. A., Arnault, J. C., Perruchas, S., Saada, S., Gacoin, T., Boilot, J.-P., and Bergonzo, P., Diam. Relat. Mater. 19, 1117 (2010).Google Scholar
Petit, T., Girard, H. A., Trouvé, A., Batonneau-Gener, I., Bergonzo, P., and Arnault, J.-C., Nanoscale 5, 8958 (2013).Google Scholar
Nebel, C. E., Kato, H., Rezek, B., Shin, D., Takeuchi, D., Watanabe, H., and Yamamoto, T., Diam. Relat. Mater. 15, 264 (2006).Google Scholar
Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., and Gogotsi, Y., J. Am. Chem. Soc. 128, 11635 (2006).Google Scholar
Liu, C.-Y., Holman, Z. C., and Kortshagen, U. R., Nano Lett. 9, 449 (2009).Google Scholar
Ledinský, M., Fejfar, A., Vetushka, A., Stuchlík, J., Rezek, B., and Kočka, J., Phys. Status Solidi RRL – Rapid Res. Lett. 5, 373 (2011).Google Scholar
Stehlik, S., Varga, M., Ledinsky, M., Jirasek, V., Artemenko, A., Kozak, H., Ondic, L., Skakalova, V., Argentero, G., Pennycook, T., Meyer, J. C., Fejfar, A., Kromka, A., and Rezek, B., J. Phys. Chem. C (2015).Google Scholar
Maier, F., Riedel, M., Mantel, B., Ristein, J., and Ley, L., Phys. Rev. Lett. 85, 3472 (2000).Google Scholar
Kondo, T., Neitzel, I., Mochalin, V. N., Urai, J., Yuasa, M., and Gogotsi, Y., J. Appl. Phys. 113, 214307 (2013).Google Scholar