Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T04:25:43.775Z Has data issue: false hasContentIssue false

Applications of Carbon Nanotubes in CFx Electrodes for High-power Li/CFx Batteries

Published online by Cambridge University Press:  26 January 2016

Qing Zhang
Affiliation:
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A.
Kenneth J. Takeuchi*
Affiliation:
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A.
Esther S. Takeuchi*
Affiliation:
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A. Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A.
Amy C. Marschilok*
Affiliation:
Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11794-2275, U.S.A. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A.
Get access

Abstract

Carbon monofluoride (CFx) has been extensively used as a reliable cathode material in lithium primary batteries because of its high energy density and long shelf life. However, the implementation of Li/ CFx batteries in high-power applications is limited by the low power capability resulting from the insulative nature of CFx material. In this work, we incorporated multi-walled carbon nanotubes into CFx electrodes and studied the impact on the electrochemical performances when CNTs were used as a conductive additive material and current collector substrate. Our work demonstrated the promising utilization of CNTs in CFx electrodes in improving the practical capacity and power capability of Li/ CFx batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Watanabe, N. and Fukuda, M., US Patent No. 3700502 (1972).Google Scholar
Watanabe, N. and Fukuda, M., US Patent No. 3536532 (1970).Google Scholar
Zhang, S. S., Foster, D., Wolfenstine, J. and Read, J., Journal of Power Sources 187 (1), 233237 (2009).Google Scholar
Nakajima, T., Hagiwara, R., Moriya, K. and Watanabe, N., Journal of Power Sources 20 (1–2), 9398 (1987).CrossRefGoogle Scholar
Root, M. J., Dumas, R., Yazami, R. and Hamwi, A., Journal of The Electrochemical Society 148 (4), A339A345 (2001).CrossRefGoogle Scholar
Antonioli G, B. F., Consiglio, F, et al. , Minerva Medica 64 (43) (1973).Google Scholar
Holmes, C. F., Journal of Power Sources 97–98 (0), 739741 (2001).Google Scholar
Pagoria, D. D., Megahed, S. A., Lautzenhiser, J. L. and Ekern, R. J., presented at the Power Sources Symposium, 1992., IEEE 35th International, 1992 (unpublished).Google Scholar
Chan, M.-L., Journal of Power Sources 80 (1–2), 273277 (1999).CrossRefGoogle Scholar
Eweka, E. I., Giwa, C. O., Mepsted, G. O., Green, K. and Scattergood, D., Journal of Power Sources 162 (2), 841846 (2006).CrossRefGoogle Scholar
Ritchie, A. G., Giwa, C. O., Bowles, P. G., Burgess, J., Eweka, E. and Gilmour, A., Journal of Power Sources 96 (1), 180183 (2001).Google Scholar
Watanabe, N., Nakajima, T. and Hagiwara, R., Journal of Power Sources 20 (1–2), 8792 (1987).Google Scholar
Touhara, H., Fujimoto, H., Watanabe, N. and Tressaud, A., Solid State Ionics 14 (2), 163170 (1984).CrossRefGoogle Scholar
Zhang, Q., Takeuchi, K. J., Takeuchi, E. S. and Marschilok, A. C., Physical Chemistry Chemical Physics 17 (35), 2250422518 (2015).CrossRefGoogle Scholar
Bock, D. C., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., Electrochimica Acta 84, 155164 (2012).Google Scholar
Marinho, B., Ghislandi, M., Tkalya, E., Koning, C. E. and de With, G., Powder Technology 221 (0), 351358 (2012).Google Scholar
Berber, S., Kwon, Y.-K. and Tománek, D., Physical Review Letters 84 (20), 46134616 (2000).Google Scholar
Zhang, Z., Peng, J. and Zhang, H., Applied Physics Letters 79 (21), 35153517 (2001).CrossRefGoogle Scholar
Baughman, R. H., Zakhidov, A. A. and de Heer, W. A., Science 297 (5582), 787792 (2002).CrossRefGoogle Scholar
Dai, H., Surface Science 500 (1–3), 218241 (2002).CrossRefGoogle Scholar
Zhang, X. L. and Wang, X. R., U.S. Patent No. 0081545 (2009).Google Scholar
Jin, E. M., Jin, B., Park, K.-H., Gu, H.-B., Park, G.-C. and Kim, K.-W., Journal of Nanoscience and Nanotechnology 8 (10), 50575061 (2008).Google Scholar
Gwon, H., Hong, J., Kim, H., Seo, D.-H., Jeon, S. and Kang, K., Energy & Environmental Science 7 (2), 538551 (2014).Google Scholar
Landi, B. J., Ganter, M. J., Cress, C. D., DiLeo, R. A. and Raffaelle, R. P., Energy & Environmental Science 2 (6), 638654 (2009).Google Scholar
Lee, S. W., Yabuuchi, N., Gallant, B. M., Chen, S., Kim, B.-S., Hammond, P. T. and Shao-Horn, Y., Nat Nano 5 (7), 531537 (2010).Google Scholar
Hamwi, A., Journal of Physics and Chemistry of Solids 57 (6–8), 677688 (1996).CrossRefGoogle Scholar