Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T19:22:20.388Z Has data issue: false hasContentIssue false

Cartilage: Multiscale Structure and Biomechanical Properties

Published online by Cambridge University Press:  10 March 2016

Ferenc Horkay*
Affiliation:
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
Peter J. Basser
Affiliation:
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
Anne-Marie Hecht
Affiliation:
Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, and CNRS, LIPhy, F-38000 Grenoble, France.
Erik Geissler
Affiliation:
Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, and CNRS, LIPhy, F-38000 Grenoble, France.
Get access

Abstract

Cartilage is a load bearing tissue that has multiple biological functions. The major proteoglycan in cartilage is the bottlebrush shaped aggrecan whose complexes with hyaluronic acid provide the compressive resistance of cartilage. The negatively charged aggrecan-hyaluronic acid complexes generate an osmotic swelling pressure within the tissue, which is balanced by the collagen network. To better understand the function of cartilage at the tissue level, we study aggrecan assemblies using an array of microscopic and macroscopic techniques. The organization of aggrecan assemblies at the supramolecular level is probed by light scattering, small-angle neutron scattering and small-angle X-ray scattering. Osmotic and rheological measurements are used to investigate the macroscopic physical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ogston, A. G., “The biological functions of the glycosaminoglycans,” Chemistry and Molecular Biology of the Intercellular Matrix, vol. 3, ed. Balazs, E. A., (Academic Press, 1970) pp. 12311240.Google Scholar
Wight, T., Mecham, R. eds. Biology of Proteoglycans (Biology of Extracellular Matrix), Academic, New York 1987.Google Scholar
Hascall, V. C., ISI Atlas of Science: Biochemistry 1, 189198 (1988).Google Scholar
Rosenberg, I., Hellmann, W., Kleinschmidt, A. K., J. Biochem. 245, 41234130 (1970).Google Scholar
Rosenberg, I., Hellmann, W., Kleinschmidt, A. K., J. Biochem. 250, 18771993 (1975).Google Scholar
Hascall, V. C., J. Supramol. Struct. 7, 101120 (1977).CrossRefGoogle Scholar
Meechai, N., Jamieson, A. M., Blackwell, J., Carrino, D. A., Bansal, R., J. Rheol. 46, 685707 (2002).Google Scholar
Basser, P. J., Schneiderman, R., Bank, R. A., Wachtel, E., Maroudas, A., Archives of Biochemistry and Biophysics 351, 207219 (1998).CrossRefGoogle Scholar
Chandran, P. L., Horkay, F., Acta Biomaterialia 8, 312 (2012).Google Scholar
Nagy, M., Horkay, F., Acta Chim Acad Sci Hung, 104, 4961 (1980).Google Scholar
Horkay, F., Zrinyi, M., Macromolecules 15, 13061310 (1982).Google Scholar
NIST Cold Neutron Research Facility, NG3 and NG7 30-m. SANS Instruments Data Aquisition Manual, 1999.Google Scholar
Berne, R., Pecora, R., Dynamic Light Scattering, Academic, London 1976.Google Scholar
Stauffer, D., Coniglio, A., Adam, M., “Gelation and critical phenomena” in Adv. Polymer Science 44, ed. Dusek, K. (Springer, 1982) pp. 103158.Google Scholar
Dozier, W. D., Huang, J. S, Fetters, L. J., Macromolecules 24, 28102814 (1991).CrossRefGoogle Scholar
Rathgeber, S., Pakula, T., Wilk, A., Matyjaszewski, K., Beers, K. L., J. Chem. Phys. 122, 124904 (2005)Google Scholar
Rathgeber, S., Pakula, T., Wilk, A., Matyjaszewski, K., Lee, H., Beers, K. L., Polymer 47, 73187327 (2006)Google Scholar
de Gennes, P. G., Scaling Concepts in Polymer Physics, Cornell, Ithaca NY 1979.Google Scholar
Hecht, A. M., Guillermo, A., Horkay, F., Mallam, S., Legrand, J. F., Geissler, E, Macromolecules 25, 36773684 (1992).CrossRefGoogle Scholar
Hecht, A. M., Horkay, F., Schleger, P., Geissler, E., , E. Macromolecules 35, 85528555 (2002).CrossRefGoogle Scholar
Dubois-Violette, M., de Gennes, P. G., Physics, 3, 3745 (1967).Google Scholar
Martin, J. E., Wilcoxon, J., Odinek, J., J. Phys. Rev. A, 43, 858872 (1991).CrossRefGoogle Scholar
Wu, C., Zhou, S., Macromolecules 29, 15741578 (1996).CrossRefGoogle Scholar
Horkay, F., Hecht, A. M., Geissler, E., J. Chem. Phys. 91, 27062711 (1989).CrossRefGoogle Scholar
McKenna, G. B., Horkay, F., Polymer 35, 57375742 (1994).Google Scholar
Horkay, F., McKenna, G. B., Polymer Networks and Gels in Physical Properties of Polymers Handbook, ed. Mark, J.E. (Springer, 2007) pp. 497523.CrossRefGoogle Scholar