Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T06:29:45.808Z Has data issue: false hasContentIssue false

A combinatorial approach to enhance the biocompatibility and heating efficiency of magnetic hyperthermia- Serum Albumin conjugated ferrimagneticmagnetite nanoparticles

Published online by Cambridge University Press:  18 January 2016

Viveka Kalidasan
Affiliation:
Department of Materials Science and Engineering, EA-03-09, 9 Engineering Drive, National University of Singapore, Singapore-117575
Xiaoli Liu
Affiliation:
Department of Materials Science and Engineering, EA-03-09, 9 Engineering Drive, National University of Singapore, Singapore-117575
Jun Ding*
Affiliation:
Department of Materials Science and Engineering, EA-03-09, 9 Engineering Drive, National University of Singapore, Singapore-117575
Ananya Dasgupta
Affiliation:
Department of Physiology, NUS Yong Loo Lin School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597
Sreedharan Sajikumar
Affiliation:
Department of Physiology, NUS Yong Loo Lin School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597
*
*Corresponding Author (msedingj@nus.edu.sg)
Get access

Abstract

Magnetic hyperthermia is a non-invasive cancer treatment method which is used synergistically with the current cancer treatments. Improved biocompatibility and enhanced heating characteristics are the pressing challenges to be addressed in magnetic hyperthermia. Through a novel combinatorial approach, we have attempted to address both the challenges. Ferrimagneticmagnetite nanoparticles (FMNPs)of size 50 nm were synthesized by thermal decomposition method and were converted to hydrophilic phase by 3-Aminopropyltrimethoxysilane (APTMS). Serum Albumin (SA) from rat was conjugated over the APTMS-FMNPs to convert to biocompatible phase. The preliminary haemolysis experiments show that SA-FMNPs are non-haemolytic (1.2 % haemolysis). It is observed from the magnetic heating experiments that due to better colloidal stability, the Specific Absorption Rate value of the SA-FMNPs are higher (2100 W/g) than the FMNPs without SA (1400 W/g). Thus we report here that SA conjugation over FMNPs (with a high saturation magnetization of 75 emu/g) provides a novel combinatorial approach to enhance both the biocompatibility and the SAR value for magnetic hyperthermia.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mamiya, H., Jeyadevan, B., Scientific Reports 1,17(2011).CrossRefGoogle Scholar
Siegal, R., Ma, J., Zou, Z., Jemal, A., CA: A Cancer Journal for Clinicians 64,929(2014).Google Scholar
Guistini, A.J., Petryk, A.A., Cassim, S.M., Tate, J.A., Baker, I., Hookes, P.J., NanoLife 17, 1732 (2010).Google Scholar
Kobayashi, T., Biotechnol J. 6, 13421347 (2011).Google Scholar
Yousef, H., al-Ramadi, B., Issa, B., Qadril, S., Hayekl, S., Hijaze, H., Nature precedings, (2008).Google Scholar
Shinkai, M., Biosci.Bioeng. 100, 111(2005).Google Scholar
Mitsumori, M., Hiraoka, M., Shibata, T., Okuno, Y., Nagata, Y., Nishimura, Y., Abe, M., Hasegawa, M., Nagae, H., Hepato Gastroenterology 43, 14311437(1996).Google Scholar
Gupta, A.K., M.Gupta,Biomaterials 26, 39954021(2005).Google Scholar
Chastellain, M., Petri, A., Gupta, A., Rao, K.V., Hofmann, H., Adv.Eng.Mater. 6, 235241(2004).Google Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., and Muller, R.N., Chem.Rev. 108, 20642110 (2008).Google Scholar
Herranz, F., Ruiz-Cabello, J., Morales, M.P., Roca, A.G., Vilar, R., Contrast Media Mol. Imaging 3,215–222(2008).Google Scholar
Herranz, F., Schmidt-Weber, C.B., Shamji, M.H., Narkus, A., Ruiz-Cabello, J., Vilar, R., Contrast Media Mol. Imaging 7, 435439 (2012).Google Scholar
Salinas, B., RuizCabello, J., Morales, M.P., Herranz, F., Nanobiomater. 1, 166172 (2012).Google Scholar
Dennis, C.L., et al. , Nanotechnology 20, 395103(2009).CrossRefGoogle Scholar
Verde, E.L., et al. , AIP Advances 2, 032120032142 (2012).Google Scholar
Carrey, J., Mehdaoui, B., Respaud, M., J. Appl. Phys. 109, 083921083937 (2011).Google Scholar
Seemann, K.M., Kuhn, B., Biomedical Optics Express, 5, 24462457 (2014).Google Scholar
Seemann, K.M., Luysberg, M., Révay, Z., Kudejova, P., Sanz, B., Cassinelli, N., Loidl, A., Ilicic, K., Multhoff, G., Schmid, T.E., Journal of Controlled Release 197, 131137 (2015).Google Scholar
Liu, Y., Welch, M.J., Bioconjug.Chem., 23, 671682 (2012).Google Scholar
Deng, Y-H., Wang, C-C., Hu, J-H., Yang, W.L., Fu, S-K., Colloids Surf. Physicochem. Eng. Asp. 262, 8793(2005).Google Scholar
Keshavarz, M., Ghasemi, Z., Journal of Physical and Theoretical Chemistry 8, 8595 (2011).Google Scholar
Samanta, B., Yan, H., Fischer, N.O., Shi, J., Jerry, D. J., Rotelloa, V.M., J Mater Chem., 18(11), 12041208 (2008).Google Scholar
Xie, J., Chen, K., Huang, J., Lee, S., Wang, J., Gao, J., Li, X., Chen, X., Biomaterials 31, 30163022 (2010).Google Scholar
Kalidasan, V., Liu, X.L., Tun, S.H., Yang, Y., Ding, J., Nanomicroletters (In Press)Google Scholar
Gibbs, R. A. et al. , Nature 428, 493521 (2004).Google Scholar
Hankins, J., Journal of Infusion Nursing 29, 260265(2009).Google Scholar
Hirayama, K., Akashi, S., Furuya, M., Fukuhara, K., Biochemicaland Biophysical Research Communications 173, 639–46 (1990).Google Scholar
Lee, J-H, Jang, J-T, Choi, J-S, Moon, S.H., Noh, S-H, Kim, J-W, Kim, J-G, Kim, I-S, Park, K., Cheon, J., Nature Nanotechnology 6, 418422(2011).Google Scholar
Luisetal, C., Scientific Reports 3, 18(2013).Google Scholar
Wu, W., Wu, Z., Yu, T., Jiang, C. Kim, W.S., Sci. Technol. Adv. Mater. 16, (2015).Google Scholar
Qiao, R., Yang, C., Gao, M., J. Mater. Chem., 19, 62746293 (2009).Google Scholar
Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J-M., Toumi, M., Mhiri, T., Colin, S. B., J. Phys. Chem. C 118, 37953810 (2014).Google Scholar
Guardia, P., Labarta, A., Batlle, X., J. Phys. Chem. C 115, 390 (2010).Google Scholar
Hufschmid, R., Arami, H., Ferguson, R. M., Gonzales, M., Teeman, E., Brush, L. N., Browning, N.D., Krishnan, K.M., Nanoscale 7, 1114211154 (2015).Google Scholar
Priya, C.L., Kumar, G., Karthik, L., and Rao, K.V.B., Journal of Agricultural Technology 8, 143156 (2012).Google Scholar
Nakaya, M., Nishida, R., Muramatsu, A., Molecules 19, 1139511403 (2014).Google Scholar
Ling, D., Lee, N., Hyeon, T., Acc.Chem.Res. 48, 12761285(2015).Google Scholar
Hu, A., Apblett, A., Lecture Notes in Nanoscale Science and Technology 22, (2014).Google Scholar
Kouassi, G.K. and Irudayaraj, J., Anal. Chem. 78, 32343241 (2006).Google Scholar
Etheridge, M.L., Hurley, K.R., Zhang, J., Jeon, S., Ring, H.L., Hogan, C., Haynes, C.L., Garwood, M., Bischof, J.C., Technology (Singap World Sci) 2,214–228(2014).Google Scholar
Carlosetal, M-B., Scientific Reports 3, (2013).Google Scholar