Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T01:04:09.406Z Has data issue: false hasContentIssue false

Coupled Light Capture and Lattice Boltzmann Model of TiO2 Micropillar Array for Water Purification

Published online by Cambridge University Press:  17 December 2019

Pegah S. Mirabedini
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
Agnieszka Truskowska
Affiliation:
Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
Duncan Z. Ashby
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
Masaru P. Rao
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA Department of Bioengineering, University of California, Riverside, CA 92521, USA
P. Alex Greaney*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
*
*(Email: greaney@ucr.edu)
Get access

Abstract

TiO2 has been widely studied as a photocatalytic material due to its non-toxicity, chemical inertness, and high photocatalytic activity. Here, we explore the operational behavior of a novel TiO2 micropillars array being developed to use solar radiation to treat recycled wastewater in long-duration space missions. A Light Capture model was developed to model light absorption. The Lattice Boltzmann method was used to simulate water flow, and the finite element method was used to model waste mass transfer.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Nakata, K. and Fujishima, A., J. of Photochem. Photobiol. C 13, 169 (2012).CrossRefGoogle Scholar
Breault, T.M. and Bartlett, B.M., J. Phys. Chem. C 116, 5986 (2012).CrossRefGoogle Scholar
Zhou, M., Yu, J., Cheng, B., and Yu, H., Mat. Chem. Phys. 93, 159 (2005).CrossRefGoogle Scholar
Peng, T., Zhao, D., Dai, K., Shi, W., and Hirao, K., J. Phys. Chem. B 109, 4947 (2005).CrossRefGoogle Scholar
Zaleska, A., Sobczak, J.W., Grabowska, E., and Hupka, J., Appl. Catal. B 78, 92 (2008).CrossRefGoogle Scholar
Testino, A., Bellobono, I.R., Buscaglia, V., Canevali, C., Darienzo, M., Polizzi, S., Scotti, R., and Morazzoni, F., J. Am. Chem. Soc. 129, 3564 (2007).CrossRefGoogle Scholar
Yu, J., Zhao, X., and Zhao, Q., J. Thin Solid Films 379, 7 (2000).CrossRefGoogle Scholar
Cozzoli, P.D., Kornowski, A., and Weller, H., J. Am. Chem. Soc. 125, 14539 (2003).CrossRefGoogle Scholar
Aimi, M.F., Rao, M.P., Macdonald, N.C., Zuruzi, A.S., and Bothman, D.P., Nat. Mater. 3, 103 (2004).CrossRefGoogle Scholar
Parker, E.R., Thibeault, B.J., Aimi, M.F., Rao, M.P., and Macdonald, N.C., J. Electrochem. Soc. 152, 675 (2005).CrossRefGoogle Scholar
Woo, B.W.K., Gott, S.C., Peck, R.A., Yan, D., Rommelfanger, M.W., and Rao, M.P., ACS Appl. Mater. Interfaces 9, 20161 (2007).CrossRefGoogle Scholar
Khandan, O., Stark, D., Chang, A., and Rao, M. P., Sens. Actuators B Chem. 205, 244 (2014)CrossRefGoogle Scholar
Mirabedini, P., LightCapture Model (2019). Available at: https://github.com/pmirabedini/LightCapture_Model (accessed on 1 Dec 2019)Google Scholar
Shan, X. and Chen, H., J. Phys. Rev. E 47, 1815 (1993)CrossRefGoogle Scholar
Succi, S., The Lattice Boltzmann Equation For Complex States of Flowing Matter, 1st ed. (Oxford University Press, New York, 2018), P. 517CrossRefGoogle Scholar
Qian, Y. H. and Orszag, S. A., EPL 21 , 255 (1993)CrossRefGoogle Scholar
Benzi, R., Succi, S., and Vergassola, M. Phys. Rep. 222, 145 (1992)CrossRefGoogle Scholar
Falcucci, G., Succi, S., Montessori, A., Melchionna, S., Prestininzi, P., Barroo, C., Bell, D. C., Biener, M. M., Biener, J., Zugic, B., and Kaxiras, E., Microfluid. Nanofluid. 20 , 105 (2016)CrossRefGoogle Scholar
Montessori, A., Falcucci, G., La Rocca, M., Ansumali, S., and Succi, S. J. Stat. Phys. 161, 1404 (2015)CrossRefGoogle Scholar
Higuera, F. J., and Jimenez, J., EPL 9 , 663 (1989)CrossRefGoogle Scholar
Chen, S., and Doolen, G. D., Annu. rev. Fluid Mech. 30 , 329 (1998)CrossRefGoogle Scholar
Truszkowska, A., Greaney, P.A., and Jovanovic, G., Comput. Chem. Eng. 95 , 249 (2016)CrossRefGoogle Scholar
Truszkowska, A.: MPI-style parallelized Shan and Chen LBM with multiscale modelling extension (2017). Available at: https://github.com/atruszkowska/LBM_MATLAB (accessed on 8 May 2019)Google Scholar
Truszkowska, A.: Serial LBM implementation for small single phase scenarios (2019). Available at: https://github.com/LBMFluids (accessed on 8 May 2019)Google Scholar
Okada, J. and Kawashima, Y., Yakugaku Zasshi 88, 1251 (1968)CrossRefGoogle Scholar