Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T06:21:04.000Z Has data issue: false hasContentIssue false

Effect of Sb doping and polyvinylpyrrolidone on the mesoporous TiO2 photoanodes for Sb2Se3 sensitized solar cells

Published online by Cambridge University Press:  20 August 2020

M.I. Ayala-Sánchez
Affiliation:
CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe 25900, Coahuila, México.
J. Escorcia-García*
Affiliation:
CONACYT-CINVESTAV del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe 25900, Coahuila, México.
I.L. Alonso-Lemus
Affiliation:
CONACYT-CINVESTAV del IPN, Unidad Saltillo, Sustentabilidad de los Recursos Naturales y Energía, Av. Industria Metalúrgica 1062, Ramos Arizpe 25900, Coahuila, México.
*
*Corresponding author: jose.escorcia@cinvestav.edu.mx
Get access

Abstract

Mesoporous-TiO2:Sb layers were developed by sol-gel and spin-coating techniques for their application as photoanodes in SSSCs. The effect of Sb doping (4 mol%) and PVP loading (0.2-0.4 g) on the optical, structural, morphological, and chemical properties were studied. SEM results showed that the morphology, porosity, and particle size in the mp-TiO2:Sb depend on the amount of polymer and Sb doping. In particular, the doping decreases the porosity and particle size. XRD patterns showed well-defined reflections resembling the anatase crystalline structure. The crystallite size was of 22.61 and 16.27 nm for the undoped layers with 0.2 and 0.4 of PVP, which decreased to 17.69 and 7.93 nm for the doped ones. It was not observed the presence of Sb2O3 or Sb metallic, indicating Sb ions were inserted in the TiO2 lattice by substitution of Ti ions. Analysis of XPS spectra showed the presence of Ti4+, O2-, and Sb3+ in the mp-TiO2:Sb layers. The optical bandgaps of the mp-TiO2:Sb were in the range of 3.14-3.33 eV. The evaluation of the mp-TiO2:Sb layers as photoanodes in the Sb2Se3-sensitized solar cells gives a Voc of 261 mV, a Jsc of 3.92 mA/cm2, and a PCE of 0.71%.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sampaio, P.G.V. and González, M.O.A., Renew. Sust. Energ. Rev. 74, 590-601 (2017).CrossRefGoogle Scholar
Gautam, G.S., Senftle, T.P., Alidoust, N., and Carter, E.A., J. Phys. Chem. C 122, 27107-27126.CrossRefGoogle Scholar
Concina, I. and Vomier, A.o, Small 11, 1744-1774 (2015).CrossRefGoogle Scholar
Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J.-I., and Hanaya, M., Chem. Commun. 51, 15894-15897 (2015).CrossRefGoogle Scholar
Ahmad, M.S., Pandey, A.K., and Rahim, N.A., Renew. Sust. Energ. Rev. 77, 89-108 (2017).CrossRefGoogle Scholar
Kouhnavard, M., Ikeda, S., Ludin, N.A., Ahmad Khairudin, N.B., Ghaffari, B.V., Mat-Teridi, M.A., Ibrahim, M.A., Sepeai, S., and Sopian, K., Renew. Sust. Energ. Rev. 37, 397-407 (2014).CrossRefGoogle Scholar
Meyer, E.L., Mbese, J.Z., and Agoro, M.A., Molecules 24, 4223 (2019).CrossRefGoogle Scholar
Lee, D.-E., Wu, J.-Y., Lin, W.-Z., and Lee, M.-W., J. Electrochem. Soc. 161, H880-H884 (2014).CrossRefGoogle Scholar
Zhao, B., Wan, Z., Luo, J., Jia, C., Liu, X., and Wang, R., Appl. Mater. Today 12, 191-197 (2018).CrossRefGoogle Scholar
Brajsa, A., Szaniawska, K., Barczyήski, R.J., Murawski, L., Kościelska, B., Vomvas, A., and Pomoni, K., Opt. Mater. 26, 151-153 (2004).CrossRefGoogle Scholar
Duan, Y., Fu, N., Zhang, Q., Fang, Y., Zhao, X., and Lin, Y., Electrochim. Acta 107, 473-480 (2013).CrossRefGoogle Scholar
Liu, M., Hou, Y., and Qu, X., J. Mater. Res. 32, 3469-3476 (2017).CrossRefGoogle Scholar
Ünlü, B. and Özacar, M., Solar Energy 196, 448-456 (2020).CrossRefGoogle Scholar
Moon, J., Takagi, H., Fujishiro, Y, and Awano, M., J. Mater. Sci. 36, 949-955 (2001).CrossRefGoogle Scholar
Hernández-Granados, A., Escorcia-García, J., Peréz-Martínez, D., García-Cerrillo, J., Menchaca-Campos, C., and Hu, H., Mater. Sci. Semicond. Process. 56, 222-227 (2016).CrossRefGoogle Scholar
Li, Z., Shen, W., He, W., and Zu, X., J. Hazard. Mater. 155, 590-594 (2008).CrossRefGoogle Scholar
Roose, B., Pathak, S., and Steiner, U., Chem. Soc. Rev. 44, 8326-8349 (2015).CrossRefGoogle Scholar
Wang, M., Bai, S., Chen, A., Duan, Y., Liu, Q., Li, D., and Lin, Y., Electrochim. Acta 77, 54-59 (2012).CrossRefGoogle Scholar
Praveen, P., Viruthagiri, G., Mugundan, S., and Shanmugam, N., Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 622-629 (2014).CrossRefGoogle Scholar
Singh, S., Sharma, V., and Sachdev, K., J. Mater. Sci. 52, 11580-11591 (2017).CrossRefGoogle Scholar
Bharti, B., Kumar, S., Lee, H.-N., and Kumar, R., Sci. Rep. 6, 32355 (2016).CrossRefGoogle Scholar
NIST standard reference database 20 (2012). Available at: https://srdata.nist.gov/xps/Default.aspx (accessed 22 May 2020).Google Scholar
Mittal, V.K., Bera, S., Sankaralingam, V., and Veeravalli, N.S., J. Nucl. Sci. Technol. 48, 256-262 (2011).CrossRefGoogle Scholar
Escorcia-García, J., Domínguez-Díaz, M., Hernández-Granados, A., and Martínez, H., MRS Adv. 3, 3307-3313 (2018).10.1557/adv.2018.551CrossRefGoogle Scholar
Lin, H., Huang, C.P., Li, W., Ni, C., Ismath Shah, S., Tseng, Y.-H., Appl. Catal. B Environ. 68, 1-11 (2006).CrossRefGoogle Scholar
Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y., J. Phys. Chem. 91, 4305-4310 (1987).CrossRefGoogle Scholar