Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T17:17:08.072Z Has data issue: false hasContentIssue false

Effects of Electrode Materials on Charge Conduction Mechanisms of Memory Device Based on Natural Aloe Vera

Published online by Cambridge University Press:  21 July 2016

Zhe Xi Lim
Affiliation:
Electronic Materials Research Group, School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
Sasidharan Sreenivasan
Affiliation:
Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
Yew Hoong Wong
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
Feng Zhao
Affiliation:
Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, U.S.A.
Kuan Yew Cheong*
Affiliation:
Electronic Materials Research Group, School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
*
*(Email: srcheong@usm.my)
Get access

Abstract

Resistive switching behaviors in Aloe vera films are being explored for nonvolatile memory applications. A simple structure in which the Aloe vera films sandwiched in between a top and bottom electrode are used. The switching behaviors of the devices in which the Aloe vera film is dried at different temperatures and the roles of top electrode materials (Al and Ag) are investigated. Current density–voltage measurements reveal that filamentary conduction is the dominant conduction process inducing resistive switching characteristics in Aloe vera films. Device with Al-top electrode requires a forming voltage higher than devices with Ag-top electrode, due to the tendency of oxide formation of these materials. The resistive switching behaviors are highly reproducible, as demonstrated by the data retention performance over an interval of 104 s and endurance capability of over 100 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, S. and Kaltenbrunner, M., ACS Nano 8, 53805382 (2014).Google Scholar
Irimia-Vladu, M., Chem. Soc. Rev. 43, 588610 (2014).Google Scholar
Mühl, S. and Beyer, B., Electronics 3, 444461 (2014).Google Scholar
Savage, N., IEEE Spectrum 52, 18 (2015).Google Scholar
Rodríguez, E. R., Martín, J. D. and Romero, C. D., Crit. Rev. Food Sci. Nutr. 50, 305326 (2010).Google Scholar
Volkov, A. G., Foster, J. C., Jovanov, E. and Markin, V. S., Bioelectrochemistry 81, 49 (2011).Google Scholar
Khor, L. Q. and Cheong, K. Y., J. Mater. Sci. Mater. Electron. 24, 26462652 (2013).Google Scholar
Khor, L. Q. and Cheong, K. Y., ECS J. Solid State Sci. Technol. 2, P440P444 (2013).Google Scholar
Volkov, A. G., Reedus, J., Mitchell, C. M., Tucket, C., Forde-Tuckett, V., Volkova, M. I., Markin, V. S. and Chua, L., Plant Signaling Behav. 9, e29056 (2014).Google Scholar
Lim, W. F., Quah, H. J., Sreenivasan, S. and Cheong, K. Y., Mater. Technol. 30, A29A35 (2015).Google Scholar
Lim, Z. X. and Cheong, K. Y., Phys. Chem. Chem. Phys. 17, 2683326853 (2015).Google Scholar
Ko, Y., Kim, Y., Baek, H. and Cho, J., ACS Nano 5, 99189926 (2011).Google Scholar
Baek, H., Lee, C., Lim, K.-I. and Cho, J., Nanotechnology 23, 155604 (2012).Google Scholar
Hota, M. K., Bera, M. K., Kundu, B., Kundu, S. C. and Maiti, C. K., Adv. Funct. Mater. 22, 44934499 (2012).Google Scholar
Gogurla, N., Mondal, S. P., Sinha, A. K., Katiyar, A. K., Banerjee, W., Kundu, S. C. and Ray, S. K., Nanotechnology 24, 345202 (2013).Google Scholar
Nagashima, K., Koga, H., Celano, U., Zhuge, F., Kanai, M., Rahong, S., Meng, G., He, Y., De Boeck, J., Jurczak, M., Vandervorst, W., Kitaoka, T., Nogi, M. and Yanagida, T., Sci. Rep. 4, 5532 (2014).CrossRefGoogle Scholar
Chang, Y.-C. and Wang, Y.-H., ACS Appl. Mater. Interfaces 6, 54135421 (2014).Google Scholar
Hosseini, N. R. and Lee, J.-S., ACS Nano 9, 419426 (2014).Google Scholar
Chen, Y.-C., Yu, H.-C., Huang, C.-Y., Chung, W.-L., Wu, S.-L. and Su, Y.-K., Sci. Rep. 5, 10022 (2015).Google Scholar
Hosseini, N. R. and Lee, J.-S., ACS Appl. Mater. Interfaces 8, 73257332 (2016).Google Scholar
Zhu, X.-J., Shang, J. and Li, R.-W., Front. Mater. Sci. 6, 183206 (2012).Google Scholar
Lide, D. R., CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, Bota Raton, FL, 2004) ch. 8, pp. 2328.Google Scholar
Oyamada, T., Tanaka, H., Matsushige, K., Sasabe, H. and Adachi, C., Appl. Phys. Lett. 83, 1252 (2003).Google Scholar
Cölle, M., Büchel, M. and de Leeuw, D. M., Org. Electron. 7, 305312 (2006).Google Scholar
Verbakel, F., Meskers, S. C. J., Janssen, R. A. J., Gomes, H. L., Cölle, M., Büchel, M. and de Leeuw, D. M., Appl. Phys. Lett. 91, 192103 (2007).Google Scholar
Kever, T., Böttger, U., Schindler, C. and Waser, R., Appl. Phys. Lett. 91, 083506 (2007).Google Scholar