Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T05:39:14.399Z Has data issue: false hasContentIssue false

Impact of Stabilizer on In Situ Formation of Ag Nanoparticles in Polyvinylidene Fluoride (PVDF) Matrix

Published online by Cambridge University Press:  10 May 2019

Maryam Sarkarat*
Affiliation:
Materials Research Institute, The Pennsylvania State University, PA16802USA
Amira B. Meddeb
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, PA16802
Sridhar Komarneni
Affiliation:
Department of Ecosystem Science and Management, The Pennsylvania State University, PA16802
Zoubeida Ounaies
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, PA16802
*
*Corresponding author . Email: mus60@psu.edu
Get access

Abstract:

In situ synthesis of Ag nanoparticles in polyvinylidene fluoride (PVDF) was investigated using different stabilizers such as 3-aminopropyltrimethoxysilane (APS) and 1-dodecanethiol (thiol). Although PVDF is a matrix, it also functions as a stabilizer. Results of UV-vis spectroscopy showed that when APS or PVDF was used, Ag nanoparticles were formed. Yet no formation occurred when thiol was used due to the complexation of Ag+ ions by thiol. Polar groups on stabilizers has an important effect on complexation process. APS, a nitrogen-based ligand, has hard base character inhibiting the complexation between Ag+ and APS. Consequently, Ag+ ions are reduced to Ag nanoparticles in N,N dimethyl formamide (DMF), which acts as a solvent and reducing agent. Transition Electron Microscopy (TEM) image showed a uniform distribution of spherical Ag nanoparticles in PVDF matrix in the presence of APS. The electrical properties of flexible nano-metal polymer were tested and the highest improvements in breakdown strength and energy density of 33 and 58 %, respectively were measured with 0.05 wt.% Ag content and APS as a stabilizer.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Fan, Z., Zhang, H., Chem. Soc. Rev., 45, 63 (2016).CrossRefGoogle Scholar
Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P., Venketesan, R., Nanomedd. Nanotechnol., 6, 103 (2010).CrossRefGoogle Scholar
Arranz-Andrés, J., Pérez, E., Cerrada, M., Eur. Polym. J., 48, 1160 (2012).CrossRefGoogle Scholar
Man, X., Junqiang, F., Xiaolong, C., IEEE, 852 (2006).Google Scholar
Schönenberger, C., Van Houten, H., Donkersloot, H., Putten, V., Fokkink, L., Physica Scripta, 45, 289 (1992).CrossRefGoogle Scholar
Smith, G. D., Bedrov, D., Langmuir, 25, 11239 (2009).CrossRefGoogle Scholar
Khodaparast, P., Ounaies, Z., IEEE Transactions on Dielectrics and Electrical Insulation, 20, 166 (2013).CrossRefGoogle Scholar
Lu, J., Moon, K. S., Xu, J., Wong, C. P., J Mater. Chem.,16, 1543 (2006).CrossRefGoogle Scholar
Li, S., Meng Lin, M., Toprak, M. S., Kim, D. K., Muhammed, M., Nano reviews, 1, 5214 (2010).CrossRefGoogle Scholar
Zhang, Q., Xu, J., Liu, Y., Chen, H. Y., Lab Chip, 8, 352 (2008).CrossRefGoogle Scholar
Goyal, A., Kumar, A., Patra, P. K., Mahendra, S., Tabatabaei, S., Alvarez, P. J., John, G., Ajayan, P. M., Macromol. rapid comm., 30, 1116 (2009).CrossRefGoogle Scholar
He, J., Kunitake, T., Nakao, A., Chem. Mater., 15, 4401 (2003).CrossRefGoogle Scholar
Ramesh, G., Porel, S., Radhakrishnan, T., Chem. Soc. Rev., 38, 2646 (2009).CrossRefGoogle Scholar
Zhang, Z., Han, M., J. Mater. Chem., 13, 641 (2003).CrossRefGoogle Scholar
Jadhav, S. A., Brunella, V., Scalarone, D., Part. Syst. Char., 32, 417 (2015).CrossRefGoogle Scholar
Frattini, A., Pellegri, N., Nicastro, D., Sanctis, O., Mater. Chem. Phys., 94, 148 (2005).CrossRefGoogle Scholar
Pastoriza-Santos, I., Liz-Marzán, L. M., Langmuir, 15, 948 (1999).CrossRefGoogle Scholar
Isabel, P., Luis, M., Pure Appl. Chem., 72, 83 (2000).Google Scholar
Benz, M., Euler, W. B., J. Appl. Polym. Sci., 89, 1093(2003).CrossRefGoogle Scholar
Dhevi, D. M., Prabu, A., Kim, K. J., J. Mater. Sci., 51, 3619 (2015).CrossRefGoogle Scholar
Pelizza, F., Smith, B. R., Johnston, K., Eur. Phys. J. Special Topics, 225, 1733 (2016).CrossRefGoogle Scholar
Hebeish, A., Shaheen, T., El-Naggar, M., Int. J. Biol. Macromol., 87, 70 (2016).CrossRefGoogle Scholar
Vairavamurthy, M. A., Goldenberg, W. S., Ouyang, S., Khalid, S., Marine chem., 70, 181 (2000).CrossRefGoogle Scholar
Housecraft, C. E., Sharpe, A. G., Inorganic Chemistry, second edition, 2005.Google Scholar
Huang, X., Jiang, P., Xie, L., Appl. Phys. Lett., 95, 242901 (2009).CrossRefGoogle Scholar