Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-12T23:31:35.171Z Has data issue: false hasContentIssue false

Magnetic properties of Single Crystal GaFeO3

Published online by Cambridge University Press:  21 January 2019

Koki Tachiyama
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Shintaro Yasui
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Badari Narayana Aroor Rao
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Takuro Dazai
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Takamasa Usami
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Tomoyasu Taniyama
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Tsukasa Katayama
Affiliation:
Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
Yosuke Hamasaki
Affiliation:
Department of Applied Physics, National Defence of Academy, Yokosuka239-8686, JAPAN
Jianding Yu
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, P.R. China200050
Huan He
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, P.R. China200050
Hui Wang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, P.R. China200050
Mitsuru Itoh*
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
Get access

Abstract

κ-Al2O3-type GaFeO3 is a promising multiferroic material due to the coexistence of a large spontaneous magnetization and polarization near room temperature. In the current study, we present the magnetic properties of single crystalline GaFeO3 and compare it with that of ε-Fe2O3. Magnetic measurements revealed that spontaneous magnetization appears below 540 K in two steps, similar to that reported for ε−Fe2O3. Partial magnetic ordering takes place at 540 K (TN1), with Fe3+ ions in two distorted octahedral sites ordering antiparallel to one another. Upon further cooling at 200 K (TN2), the remaining Fe3+ ions in regular octahedra and tetrahedra order antiparallel to one another. Substitution of Ga for Fe in ε-Fe2O3 leads to a decrease in TN1 and TN2 from 850 to 540 K and from 480 to 200 K, respectively, caused by a dilution of magnetic Fe by nonmagnetic Ga and preferential site occupation of Ga.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arima, T., Higashiyama, D., Kaneko, Y., He, J. P., Goto, T., Miyasaka, S., Kimura, T., Oikawa, K., Kamiyama, T., Kumai, R., Tokura, Y. Structural and magnetoelectric properties of Ga2−xFexO3 single crystals grown by a floating-zone method. Phys. Rev. B 70, 064426(2004).CrossRefGoogle Scholar
Ohkoshi, S., Tokoro, H. Hard Magnetic Ferrite: ε-Fe2O3. Bull. Chem. Soc. Jpn. 86, 897-907(2013).CrossRefGoogle Scholar
Ohkoshi, S., Kuroki, S., Sakurai, S., Matsumoto, K., Sato, K., Sasaki, S. A Millimeter-Wave Absorber Based on Gallium-Substituted ε-Iron Oxide Nanomagnets. Angew. Chem. Int. Ed. 46, 8392-8395(2007).CrossRefGoogle ScholarPubMed
Katayama, T., Yasui, S., Hamasaki, Y., Shiraishi, T., Akama, A., Kiguchi, T., Itoh, M. Ferroelectric and Magnetic Properties in Room-temperature Multiferroic GaxFe2-xO3 Epitaxial Thin Films. Adv. Funct. Mater. 27 , 1704789(2017).Google Scholar
Yoshikiyo, M., Yamada, K., Namai, A., Ohkoshi, S. Study of the Electronic Structure and Magnetic Properties of ε-Fe2O3 by First-Principles Calculation and Molecular Orbital Calculations. J. Phys. Chem. C 116 , 8688-8691(2012).CrossRefGoogle Scholar
Tuček, J., Zbořil, R., Namai, A., Ohkoshi, S. ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chem. Mater. 22 , 6483-6505(2010).CrossRefGoogle Scholar
Mukherjee, S., Roy, A., Auluck, S., Prasad, R., Gupta, R., Gard, A. Room Temperature Nanoscale Ferroelectricity in Magnetoelectric GaFeO3 Epitaxial Thin Films. Phys. Rev. Lett. 111 , 087601(2013).CrossRefGoogle ScholarPubMed
Song, S., Jang, H. M., Lee, N., Son, J. Y., Gupta, R., Garg, A., Ratanapreechachai, J., Scott, J. F. Ferroelectric polarization switching with a remarkably high activation energy in orthorhombic GaFeO3 thin films. NPG Asia Materials 8, e242(2016).CrossRefGoogle Scholar
Gich, M., Fina, I., Morelli, A.; Sánchez, F.; Alexe, M.; Gàzquez, J.; Fontcuberta, J.; Roig, A. Multiferroic Iron Oxide Thin Films at Room Temperature. Adv. Mater. 26 , 4645-4652(2014).CrossRefGoogle ScholarPubMed
Trassin, M., Viart, N., Versini, G., Barre, S., Pourroy, G., Lee, J., Jo, W., Dumesnil, K., Dufour, C., Robert, S. Room temperature ferrimagnetic thin films of the magnetoelectric Ga2−xFexO3. J. Mater. Chem. 19, 8876-8880(2009).CrossRefGoogle Scholar
Katayama, T., Yasui, S., Hamasaki, Y., Osakabe, T., Itoh, M. Chemical Tuning of Room-temperature Ferrimagnetism and Ferroelectricity in ε-Fe2O3-type Multiferroic Oxide Thin Films. J. Mater. Chem. C 5 , 12597-12601(2017).CrossRefGoogle Scholar
Bourree, F., Baudour, J. L., Elabadraoi, E., Musso, J., Laurent, C., Rousset, A., Crystal and Magnetic Structure of Piezoelectric, Ferrimagnetic and Magnetoelectric Aluminium Iron Oxide FeAlO3 from Neutron Powder Diffraction. Acta Cryst. B52 , 217-222(1996).CrossRefGoogle Scholar
Namai, A., Sakurai, S., Nakajima, M., Suemoto, T., Matsumoto, K., Goto, M., Sasaki, S., Ohkoshi, S. Synthesis of an Electromagnetic Wave Absorber for High-Speed Wireless Communication. J. Am. Chem. Soc. 131 , 1170-1173(2009).CrossRefGoogle ScholarPubMed
Saha, R., Shireen, A., Shirodkar, S. N., Waghmare, U. V., Sundaresan, A., Rao, C. N. R. Effect of Cr and Mn ions on the structure and magnetic properties of GaFeO3: Role of the substitution site. J. Solid State Chem. 184 , 2353-2359(2011).CrossRefGoogle Scholar
Mohamed, M. B., Wang, H., Fuess, H. Dielectric relaxation and magnetic properties of Cr doped GaFeO3. J. Phys. D: Appl. Phys. 43 , 455409(2010).CrossRefGoogle Scholar
Mohamed, M. B., Senyshyn, A., Ehrenberg, H., Fuess, H. Structural, magnetic, dielectric properties of multiferroic GaFeO3 prepared by solid state reaction and sol–gel methods. J. Alloys Compd. 492 , L20-L27(2010).CrossRefGoogle Scholar
García-Munõz, J. L., Romaguera, A., Fauth, F., Nogués, J., Gich, M., Unveiling a New High-Temperature Ordered Magnetic Phase in ε-Fe2O3. Chem. Mater. 29, 9705-9713(2017).CrossRefGoogle Scholar
Namai, A., Yoshikiyo, M., Yamada, K., Sakurai, S., Goto, T., Yoshida, T., Mmiyazaki, T., Nakajima, M., Suemoto, T., Tokoro, H., Ohkoshi, S. Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nat. Commun. 3 , 10348040(2012).CrossRefGoogle ScholarPubMed
Namai, A., Yoshikiyo, M., Umeda, S., Yoshida, T., Miyazaki, T., Nakajima, M., Yamaguchi, K., Suemoto, T., Ohkoshi, S., The synthesis of rhodium substituted ε-iron oxide exhibiting super high frequency natural resonance. J. Mater. Chem. C 1, 5200-5206(2013).CrossRefGoogle Scholar
Yoshikiyo, M., Namai, A., Nakajima, M., Yamaguchi, K., Suemoto, T., Ohkoshi, S. High-frequency millimeter wave absorption of indium-substituted ε-Fe2O3 spherical nanoparticles. J. Appl. Phys. 115, 172613(2014).CrossRefGoogle Scholar
Van Hook, H. J. Thermal Stability of Gallium Orthoferrite in the System of Fe2O3-FeO-Ga2O3. J. Am. Ceram. Soc. 48 , 470-472(1965).CrossRefGoogle Scholar
Kim, J.-Y., Koo, T.Y., Park, J.-H. Orbital and Bonding Anisotoropy in Half-Filled GaFeO3 Magnetoelectric Ferrimagnet. Phys. Rev. Lett. 96, 047205(2006).CrossRefGoogle ScholarPubMed
Han, T. C., Lee, Y. C., Chu, Y. T. Effect of cobalt doping on site-disorder and magnetic behavior of magnetoelectric GaFeO3 nanoparticles. Appl. Phys. Lett. 105, 212407(2014).CrossRefGoogle Scholar
Mohamed, M. B., Hinterstein, M., Fuess, H. Dielectric anomaly and magnetic properties of multiferroic GaFe0.75Mn0.25O3. Mater. Lett. 85, 102-105(2012).CrossRefGoogle Scholar
Katayama, T., Yasui, S., Hamasaki, Y., Itoh, M. Control of crystal-domain orientation in multiferroic Ga0.6Fe1.4O3 epitaxial thin films. Appl. Phys. Lett. 110, 212905(2017).CrossRefGoogle Scholar
Chemical Tuning of Room-temperature Ferrimagnetism and Ferroelectricity in ε-Fe2O3-type Multiferroic Oxide Thin Films, Tsukasa Katayama, Shintaro Yasui, Yosuke Hamasaki, Takuya Osakabe, and Mitsuru Itoh, Journal of Materials Chemistry C, 5, 12597-12601(2017).CrossRefGoogle Scholar
Katayama, T., Yasui, S., Osakabe, T., Hamasaki, Y., Itoh, M. Ferrimagnetism and Ferroelectricity in Cr-Substituted GaFeO3 Epitaxial Films. Chem. Mater. 30, 1436-1441(2018).CrossRefGoogle Scholar
Katayama, Tsukasa, Osakabe, Takuya, Yasui, Shintaro, Hamasaki, Yosuke, Narayana Rao, Badari, Zhang, Minghui, and Itoh, Mitsuru, Effect of Cr Substitution on Ferrimagnetic and Ferroelectric Properties of GaFeO3 Epitaxial Thin Films. Appl. Phys. Lett., 113, 162901(2018).CrossRefGoogle Scholar
Hamasaki, Y., Shimizu, T., Taniguchi, H., Taniyama, T., Yasui, S., Itoh, M. Epitaxial growth of metastable multiferroic AlFeO3 film on SrTiO3 (111) substrate. Appl. Phys. Lett. 104, 082906(2014)CrossRefGoogle Scholar
Hamasaki, Y., Shimizu, T, Yasui, S., Shiraishi, T., Akama, A., Kiguchi, T., Taniyama, T., Itoh, M. Crystal Structure and Magnetism in κ-Al2O3-type AlxFe2-xO3 Films on SrTiO3(111). J. Appl. Phys. 122, 015301(2017).CrossRefGoogle Scholar
Hamasaki, Y., Shimizu, T., Yasui, S., Taniyama, T., Itoh, M. Evidence of ferroelectricity in ferrimagnetic κ-Al2O3-type In0.25Fe1.75O3 films. Appl. Phys. Lett. 109, 162901(2016).CrossRefGoogle Scholar