Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-14T23:50:21.288Z Has data issue: false hasContentIssue false

Material Design Strategies to Achieve Simultaneous High Power and High Energy Density

Published online by Cambridge University Press:  02 April 2018

Qiyuan Wu
Affiliation:
Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY11973
Calvin D. Quilty
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794
Kenneth J. Takeuchi
Affiliation:
Department of Chemistry, Stony Brook University, Stony Brook, NY11794 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
Esther S. Takeuchi
Affiliation:
Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY11973 Department of Chemistry, Stony Brook University, Stony Brook, NY11794 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
Amy C. Marschilok*
Affiliation:
Energy and Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY11973 Department of Chemistry, Stony Brook University, Stony Brook, NY11794 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
*
*corresponding author: amy.marschilok@stonybrook.edu.
Get access

Abstract

Emerging applications require batteries to have both high energy and high power which are not necessarily compatible. The typical inverse relationship between power and energy in batteries is often due to the slow ion diffusion in electrode materials. While the optimization of current battery technology may be sufficient to fully address this issue, we present here that novel chemistry-focused strategies based on new fundamental understanding of materials may be applied to lead to the development of a new generation of batteries that store energy sufficiently and deliver it rapidly.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

ŧ

Equivalent contributions.

References

REFERENCES

Tang, Y., Zhang, Y., Li, W., Ma, B. and Chen, X., Chem. Soc. Rev. 44 (17), 59265940 (2015).Google Scholar
Smith, P. F., Takeuchi, K. J., Marschilok, A. C. and Takeuchi, E. S., Acct. Chem. Res. 50 (3), 544548 (2017).Google Scholar
Xu, F., Wu, L., Meng, Q., Kaltak, M., Huang, J., Durham, J. L., Fernandez-Serra, M., Sun, L., Marschilok, A. C., Takeuchi, E. S., Takeuchi, K. J., Hybertsen, M. S., and Zhu, Y., Nat. Commun. 8, 15400 (2017).CrossRefGoogle Scholar
Zhang, W., Topsakal, M., Cama, C., Pelliccione, C. J., Zhao, H., Ehrlich, S., Wu, L., Zhu, Y., Frenkel, A. I., Takeuchi, K. J., Takeuchi, E. S., Marschilok, A. C., Lu, D. and Wang, F., J. Am. Chem. Soc. 139 (46), 1659116603 (2017).Google Scholar
Wu, L., Xu, F., Zhu, Y., Brady, A. B., Huang, J., Durham, J. L., Dooryhee, E., Marschilok, A. C., Takeuchi, E. S. and Takeuchi, K. J., ACS Nano 9 (8), 84308439 (2015).Google Scholar
Zhu, S., Marschilok, A. C., Takeuchi, E. S. and Takeuchi, K. J., Electrochem. Solid-State Lett. 12 (4), A91A94 (2009).Google Scholar
Bock, D. C., Kirshenbaum, K. C., Wang, J., Zhang, W., Wang, F., Wang, J., Marschilok, A. C., Takeuchi, K. J. and Takeuchi, E. S., ACS Appl. Mater. Interfaces 7 (24), 1345713466 (2015).Google Scholar
Leng, M., Chen, Y. and Xue, J., Nanoscale 6 (15), 85318534 (2014).CrossRefGoogle Scholar
Lewis, C. S., Li, Y. R., Wang, L., Li, J., Stach, E. A., Takeuchi, K. J., Marschilok, A. C., Takeuchi, E. S. and Wong, S. S., ACS Sustainable Chem. Eng. 4 (12), 62996312 (2016).Google Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., Adv. Mater. (Weinheim, Ger.) 11 (15), 13071311 (1999).Google Scholar
Mao, Y., Kanungo, M., Hemraj-Benny, T. and Wong, S. S., J. Phys. Chem. B 110(2), 702710 (2006).Google Scholar
Wang, L., Zhang, Y., Scofield, M. E., Yue, S., McBean, C., Marschilok, A. C., Takeuchi, K. J., Takeuchi, E. S. and Wong, S. S., ChemSusChem 8(19), 33043313 (2015).Google Scholar
Sun, L., Wang, J., Jiang, K. and Fan, S., J. Power Sources 248, 265272 (2014).Google Scholar
He, N.-D., Wang, B.-S. and Huang, J.-J., J. Solid State Electrochem. 14(7), 12411246 (2010).CrossRefGoogle Scholar
Colbow, K. M., Dahn, J. R. and Haering, R. R., J. Power Sources 26(3), 397402 (1989).Google Scholar
Kitta, M., Akita, T., Tanaka, S. and Kohyama, M., J. Power Sources 257, 120125 (2014).Google Scholar
Lu, X., Zhao, L., He, X., Xiao, R., Gu, L., Hu, Y.-S., Li, H., Wang, Z., Duan, X., Chen, L., Maier, J. and Ikuhara, Y., Adv. Mater. 24(24), 32333238 (2012).Google Scholar
Pang, W. K., Peterson, V. K., Sharma, N., Shiu, J.-J. and Wu, S.-h., Chem. Mater. 26 (7), 23182326 (2014).CrossRefGoogle Scholar
Wagemaker, M., van Eck, E. R. H., Kentgens, A. P. M. and Mulder, F. M., J. Phys. Chem. B 113(1), 224230 (2009).Google Scholar
Wilkening, M., Iwaniak, W., Heine, J., Epp, V., Kleinert, A., Behrens, M., Nuspl, G., Bensch, W. and Heitjans, P., Phys. Chem. Chem. Phys. 9 (47), 61996202 (2007).Google Scholar
Hain, H., Scheuermann, M., Heinzmann, R., Wünsche, L., Hahn, H. and Indris, S., Solid State Nucl. Magn. Reson. 42, 916 (2012).Google Scholar
Schmidt, W., Bottke, P., Sternad, M., Gollob, P., Hennige, V. and Wilkening, M., Chem. Mater. 27(5), 17401750 (2015).Google Scholar
Wagemaker, M., Simon, D. R., Kelder, E. M., Schoonman, J., Ringpfeil, C., Haake, U., Lützenkirchen-Hecht, D., Frahm, R. and Mulder, F. M., Adv. Mater. 18(23), 31693173 (2006).Google Scholar
Ganapathy, S., Vasileiadis, A., Heringa, J. R. and Wagemaker, M., Adv. Energy Mater. 7(9), 1601781-n/a (2017).Google Scholar