Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T22:03:17.517Z Has data issue: false hasContentIssue false

Optical approaches to improving perovskite/Si tandem cells

Published online by Cambridge University Press:  18 January 2016

Haejun Chung
Affiliation:
Birck Nanotechnology Center, Electrical and Computer Engineering, 1205 W. State St, West Lafayette, IN 47906, U.S.A.
Xingshu Sun
Affiliation:
Birck Nanotechnology Center, Electrical and Computer Engineering, 1205 W. State St, West Lafayette, IN 47906, U.S.A.
Peter Bermel*
Affiliation:
Birck Nanotechnology Center, Electrical and Computer Engineering, 1205 W. State St, West Lafayette, IN 47906, U.S.A.
*
Get access

Abstract

Recently, metal-halide perovskites have demonstrated an extraordinarily rapid advance in single junction cell efficiency to over 20%, while still offering potentially low costs. Since the bandgap is larger than the ideal single-junction value, perovskite-based tandem cells can theoretically offer even higher efficiencies. Instead, however, the record tandem cell performance in experiments to date has come in slightly below that of record single junctions, although slightly higher than the same single junctions. In this work, we consider both how this disconnect can be explained quantitatively, and then devise experimentally feasible, variance-aware approaches to address them. The first stage of our approach is based on reconfiguring dielectric front coatings to help reduce net reflected power and balance junction currents by reshaping the reflection peaks. This method could be applied to post-fabrication stage of perovskite/c-Si tandem cells, and also applicable to cell and module level structures. In the second stage of our approach, we can almost entirely eliminate Fresnel reflection by applying a conformal periodic light trapping structure. In the best case, a short circuit current (Jsc) of 18.0 mA/cm2 was achieved, after accounting for 4.8 mA/cm2 of parasitic loss and 1.6 mA/cm2 reflection loss. Further improvements may require a change in the baseline materials used in perovskite cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J. E., Grätzel, M., and Park, N.-G., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.,” Sci. Rep. 2, 591 (2012).CrossRefGoogle Scholar
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., and Snaith, H. J., “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.,” Science 338, 643–7 (2012).CrossRefGoogle Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. -b., Duan, H.-S., Hong, Z., You, J., Liu, Y., and Yang, Y., “Interface engineering of highly efficient perovskite solar cells,” Science (80-. ). 345, 542546 (2014).Google Scholar
Almansouri, I., Ho-Baillie, A., and Green, M. A., “Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices,” Jpn. J. Appl. Phys. 54, 08KD04 (2015).Google Scholar
Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., and Buonassisi, T., “A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction,” Appl. Phys. Lett. 106, 121105 (2015).Google Scholar
Asadpour, R., Chavali, R. V. K., Ryyan Khan, M., and Alam, M. A., “Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ∼ 33%) solar cell,” Appl. Phys. Lett. 106, 243902 (2015).Google Scholar
Löper, P., Moon, S.-J., de Nicolas, S. M., Niesen, B., Ledinsky, M., Nicolay, S., Bailat, J., Yum, J.-H., De Wolf, S., and Ballif, C., “Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells.,” Phys. Chem. Chem. Phys. 17, 1619–29 (2015).Google Scholar
Bailie, C. D., Christoforo, M. G., Mailoa, J. P., Bowring, A. R., Unger, E. L., Nguyen, W. H., burschka, J., Pellet, N., Lee, J. Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleo, A., and McGehee, M. D., “Polycrystalline Tandem Photovoltaics Using Perovskites on Top of Silicon and CIGS,” Energy Environ. Sci. 8, 956963 (2014).Google Scholar
Albrecht, S., Saliba, M., Correa Baena, J. P., Lang, F., Kegelmann, L., Mews, M., Steier, L., Abate, A., Rappich, J., Korte, L., Schlatmann, R., Mohammad K., N., Hagfeldt, A., Grätzel, M., and Rech, B., “Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells Processed at Low Temperature,” Energy Environ. Sci. (2015).Google Scholar
Nguyen, W. H., Bailie, C. D., Unger, E. L., and McGehee, M. D., “Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI) 2 in Perovskite and Dye-Sensitized Solar Cells,” J. Am. Chem. Soc. 136, 1099611001 (2014).CrossRefGoogle Scholar
Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., and Bolink, H. J., “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128132 (2013).Google Scholar
Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., Kausch-Busies, N., and Snaith, H. J., “Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells.,” J. Phys. Chem. Lett. 6, 1666–73 (2015).Google Scholar
Filipič, M., Löper, P., Niesen, B., De Wolf, S., Krč, J., Ballif, C., and Topič, M., “CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.,” Opt. Express 23, A263–78 (2015).Google Scholar
Lal, N. N., White, T. P., and Catchpole, K. R., “Optics and Light Trapping for Tandem Solar Cells on Silicon,” IEEE J. Photovoltaics 4, 13801386 (2014).Google Scholar
Schneider, B. W., Lal, N. N., Baker-Finch, S., and White, T. P., “Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells.,” Opt. Express 22, A1422–30 (2014).Google Scholar
Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A., and Snaith, H. J., “Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci. 7, 11421147 (2014).Google Scholar
Chen, Y., Chen, T., and Dai, L., “Layer-by-layer growth of CH3 NH3 PbI(3-x)Clx for highly efficient planar heterojunction perovskite solar cells.,” Adv. Mater. 27, 1053–9 (2015).Google Scholar
Zhao, J. and Green, M. A., “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Devices 38, 19251934 (1991).Google Scholar
Chung, H., “Accurate FDTD Dispersive Modeling for Concrete Materials,” ETRI J. 35, 915918 (2013).Google Scholar
Ha, S.-G., Cho, J., Choi, J., Kim, H., and Jung, K.-Y., “FDTD Dispersive Modeling of Human Tissues Based on Quadratic Complex Rational Function,” IEEE Trans. Antennas Propag. 61, 996999 (2013).Google Scholar
Chung, H., Jung, K.-Y., Tee, X. T., and Bermel, P., “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function.,” Opt. Express 22, A818–32 (2014).CrossRefGoogle Scholar
Chung, H., Ha, S.-G., Choi, J., and Jung, K.-Y., “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electron. 102, 12181228 (2014).Google Scholar
Chung, H., Jung, K.-Y., and Bermel, P., “Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells,” Opt. Mater. Express 5, 2054 (2015).Google Scholar
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., Atwater, H. A., and Polman, A., “Light trapping in ultrathin plasmonic solar cells.,” Opt. Express 18, A237A245 (2010).Google Scholar
Bermel, P., Luo, C., Zeng, L., Kimerling, L. C., and Joannopoulos, J. D., “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986 (2007).Google Scholar
Zhou, D. and Biswas, R., “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103, 093102 (2008).Google Scholar