Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T11:27:27.488Z Has data issue: false hasContentIssue false

Photovoltage generation in enzymatic bio-hybrid architectures

Published online by Cambridge University Press:  03 January 2020

Michele Di Lauro
Affiliation:
Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Ferrara, Italy
Gabriella Buscemi
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy CNR-IPCF Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, Bari, Italy
Michele Bianchi
Affiliation:
Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Ferrara, Italy
Anna De Salvo
Affiliation:
Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Ferrara, Italy Section of Human Physiology University of Ferrara, Ferrara, Italy
Marcello Berto
Affiliation:
Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
Stefano Carli
Affiliation:
Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Ferrara, Italy
Gianluca Maria Farinola
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
Luciano Fadiga
Affiliation:
Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Ferrara, Italy Section of Human Physiology University of Ferrara, Ferrara, Italy
Fabio Biscarini
Affiliation:
Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Ferrara, Italy Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
Massimo Trotta*
Affiliation:
CNR-IPCF Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, Bari, Italy
Get access

Abstract

Most of the photochemical activity of bacterial photosynthetic apparatuses occurs in the reaction center, a transmembrane protein complex which converts photons into charge-separated states across the membrane with a quantum yield close to unity, fuelling the metabolism of the organism. Integrating the reaction center from the bacterium Rhodobacter sphaeroides onto electroactive surfaces, it is possible to technologically exploit the efficiency of this natural machinery to generate a photovoltage upon Near Infra-Red illumination, which can be used in electronic architectures working in the electrolytic environment such as electrolyte-gated organic transistors and bio-photonic power cells. Here, photovoltage generation in reaction center-based bio-hybrid architectures is investigated by means of chronopotentiometry, isolating the contribution of the functionalisation layers and defining novel surface functionalization strategies for photovoltage tuning.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Martin, W.F., Bryant, D.A., and Beatty, J.T., FEMS Microbiol. Rev. 42, 205 (2018).10.1093/femsre/fux056CrossRefGoogle Scholar
Allen, J.P. and Williams, J.C., FEBS Lett. 5 (1998).Google Scholar
Feher, G., Allen, J.P., Okamura, M.Y., and Rees, D.C., Nature 339, 111 (1989).10.1038/339111a0CrossRefGoogle Scholar
Wraight, C.A. and Clayton, R.K., BBA - Bioenerg. 333, 246 (1974).10.1016/0005-2728(74)90009-7CrossRefGoogle Scholar
Nagy, L., Milano, F., Dorogi, M., Agostiano, A., Laczkó, G., Szebényi, K., Váró, G., Trotta, M., and Maróti, P., Biochemistry 43, 12913 (2004).CrossRefGoogle Scholar
Wasielewski, M.R., Gaines, G.L., Wiederrecht, G.P., Svec, W.A., and Niemczyk, M.P., J. Am. Chem. Soc. 115, 10442 (1993).10.1021/ja00075a103CrossRefGoogle Scholar
Puntoriero, F., Sartorel, A., Orlandi, M., La Ganga, G., Serroni, S., Bonchio, M., Scandola, F., and Campagna, S., Coord. Chem. Rev. 255, 2594 (2011).CrossRefGoogle Scholar
Nocera, D.G., Acc. Chem. Res. 45, 767 (2012).10.1021/ar2003013CrossRefGoogle Scholar
Tang, J., Qin, N., Chong, Y., Diao, Y., Y., Wang, Z., Xue, T., Jiang, M., Zhang, J., Zheng, G., Nanowire arrays restore vision in blind mice. Nat Commun 9, 786 (2018)CrossRefGoogle ScholarPubMed
Milano, F., Tangorra, R.R., Hassan Omar, O., Ragni, R., Operamolla, A., Agostiano, A., Farinola, G.M., and Trotta, M., Angew. Chemie - Int. Ed. 51, 11019 (2012).CrossRefGoogle Scholar
Liu, J., Mantell, J., Di Bartolo, N., and Jones, M.R., Small 1804267, 1804267 (2018).Google Scholar
Friebe, V.M., Delgado, J.D., Swainsbury, D.J.K., Gruber, J.M., Chanaewa, A., Van Grondelle, R., Von Hauff, E., Millo, D., Jones, M.R., and Frese, R.N., Adv. Funct. Mater. 26, 285 (2016).CrossRefGoogle Scholar
Operamolla, A., Ragni, R., Milano, F., Roberto Tangorra, R., Antonucci, A., Agostiano, A., Trotta, M., and Farinola, G., J. Mater. Chem. C 3, 6471 (2015).CrossRefGoogle Scholar
Milano, F., Punzi, A., Ragni, R., Trotta, M., and Farinola, G.M., Adv. Funct. Mater. 1805521, 1805521 (2018).Google Scholar
Głowacki, E.D., Tangorra, R.R., Coskun, H., Farka, D., Operamolla, A., Kanbur, Y., Milano, F., Giotta, L., Farinola, G.M., and Sariciftci, N.S., J. Mater. Chem. C 3, 6554 (2015).10.1039/C5TC00556FCrossRefGoogle Scholar
Terasaki, N., Yamamoto, N., Tamada, K., Hattori, M., Hiraga, T., Tohri, A., Sato, I., Iwai, M., Iwai, M., Taguchi, S., Enami, I., Inoue, Y., Yamanoi, Y., Yonezawa, T., Mizuno, K., Murata, M., Nishihara, H., Yoneyama, S., Minakata, M., Ohmori, T., Sakai, M., and Fujii, M., Biochim. Biophys. Acta - Bioenerg. 1767, 653 (2007).CrossRefGoogle Scholar
Takshi, A., Khorramshahi, F., Yaghoubi, H., Jun, D., and Beatty, J.T., in Proc.SPIE (2019).Google Scholar
Ravi, S.K., Rawding, P., Elshahawy, A.M., Huang, K., Sun, W., Zhao, F., Wang, J., Jones, M.R., and Tan, S.C., Nat. Commun. 10, 902 (2019).CrossRefGoogle Scholar
Di Lauro, M., la Gatta, S., Bortolotti, C.A., Beni, V., Parkula, V., Drakopoulou, S., Giordani, M., Berto, M., Milano, F., Cramer, T., Murgia, M., Agostiano, A., Farinola, G.M., Trotta, M., and Biscarini, F., Adv. Electron. Mater. (2019).Google Scholar
Axelrod, H.L., Abresch, E.C., Okamura, M.Y., Yeh, A.P., Rees, D.C., and Feher, G., J. Mol. Biol. 319, 501 (2002).10.1016/S0022-2836(02)00168-7CrossRefGoogle Scholar
Gerencsér, L., Laczkó, G., and Maróti, P., Biochemistry 38, 16866 (1999).CrossRefGoogle Scholar
Singh, V.K., Ravi, S.K., Ho, J.W., Wong, J.K.C., Jones, M.R., and Tan, S.C., Adv. Funct. Mater. 28, 1 (2018).Google Scholar
Głowacki, E.D., Romanazzi, G., Yumusak, C., Coskun, H., Monkowius, U., Voss, G., Burian, M., Lechner, R.T., Demitri, N., Redhammer, G.J., Sünger, N., Suranna, G.P., and Sariciftci, S., Adv. Funct. Mater. 25, 776 (2015).CrossRefGoogle Scholar
Milano, F., Agostiano, A., Mavelli, F., and Trotta, M., Eur. J. Biochem. 270, 4595 (2003).CrossRefGoogle Scholar
Milano, F., Italiano, F., Agostiano, A., and Trotta, M., Photosynth Res 107 (2009).Google Scholar
Press, W., Teukolsky, S., Vetterling, W., Flannery, B., Ziegel, E., Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes: The Art of Scientific Computing (1987).Google Scholar