Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-16T00:52:48.494Z Has data issue: false hasContentIssue false

Silicon stabilized alumina thin films as gas permeation barriers prepared by spatial atomic layer deposition

Published online by Cambridge University Press:  30 January 2017

Sebastian Franke*
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstr. 22, 38106 Braunschweig, Germany,
Sebastian Beck
Affiliation:
Universität Heidelberg, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Reinhard Caspary
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstr. 22, 38106 Braunschweig, Germany,
Hans-Hermann Johannes
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstr. 22, 38106 Braunschweig, Germany,
Annemarie Pucci
Affiliation:
Universität Heidelberg, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Wolfgang Kowalsky
Affiliation:
Technische Universität Braunschweig, Institut für Hochfrequenztechnik, Schleinitzstr. 22, 38106 Braunschweig, Germany,
Get access

Abstract

The growth mechanism and the barrier performance of Al2O3, SiO2 and a binary Si-Al oxide (SiAlxOy) deposited by spatial atomic layer deposition (SALD) were investigated. Alumina and silica were deposited by TMA and BDEAS with growth-per-cycles (GPC) of 0.16 and 0.013 nm, respectively. Interestingly a significant higher GPC of 0.225 nm was found for SiAlxOy. Although alumina in principle has excellent barrier properties, the films easily degraded and lose their barrier performance if exposed to water vapor at elevated temperatures. Therefore, the barrier performances of these films were investigated under harsh environment conditions. We found that the barrier performance of 100 nm Al2O3 failed in less than one day at 70 °C with 70 % relative humidity, whereas 100 nm SiAlxOy sustained for approximately one week. However, the resistivity of those barrier systems was significantly improved by inserting a single 3.3 nm SiO2 layer into the barrier films. In this way the barrier system withstands up to 5 months and the intrinsic water vapor transition rate was reduced by two to three orders of magnitude to ∼10-4 g/m2/day at these tough aging conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carcia, P. F., McLean, R. S., Reilly, M., Groner, M. D. and George, S. M., Appl. Phys. Lett. 89, 031915 (2006).Google Scholar
Nahar, R. K., J. Vac. Sci. Technol. B 20, 382 (2002).Google Scholar
Dameron, A. A., Davidson, S. D., Burton, B. B., Carcia, P. F., McLean, R. S. and George, S. M., J. Phys. Chem. C 112, 4573 (2008).Google Scholar
Burrows, P. E., Gaff, G. L., Gross, M. E., Martin, P. M., Shi, M. K., Hall, M., Mast, E., Bonham, C., Bennett, W. and Sullivan, M. B., Display 22, 65 (2001).Google Scholar
Carcia, P. F., McLean, R. S., Groner, M. D., Dameron, A. A. and George, S. M., J. Appl. Phys. 106, 023533 (2009).CrossRefGoogle Scholar
Poodt, P., Lankhorst, A., Roozeboom, F., Tiba, V., Spee, K., Maas, D. and Vermeer, A.. ECS Trans. 33, 2 (2010).Google Scholar
NIST Chemistry WebBook: Standard Reference Database. Available at: www.nist.gov. (accessed 14 April 2014).Google Scholar
SAM.24-Safty and Handling Recommondations (June 2013). Air Liquide, 75 Quai d’Orsay, Paris Cedex 07, www.airliquide.com.Google Scholar
Franke, S., Baumkötter, M., Monka, C., Raabe, S., Caspary, R., Johannes, H.-H., Gargouri, H., Beck, S., Pucci, A. and Kowalsky, W., J. Vac. Sci. Technol. A 35, 01B117 (2017).Google Scholar
Nisato, G., Bouten, P., Slikkerveer, P., Bennett, W., Graff, G. L., Rutherford, N. and Wiese, L., Proc. 21st Annual Asia Display, 8th Intl. Display Workshop, (2001).Google Scholar
Maydannik, P. S., Plyushch, A., Sillanpää, M. and Cameron, D. C., J. Vac. Sci. Technol. A 33, 031603 (2015).Google Scholar
Suzuki, I., Yanagita, K. and Dussarrat, C., ECS Trans. 3, 119 (2007).Google Scholar
Han, B., Zhang, Q., Wu, J., Han, B., Karwacki, E. J., Derecskei, A., Xiao, M., Lei, X., O’Neill, M. L. and Cheng, H., J. Phys. Chem. C 116, 947 (2012).Google Scholar
Hirashita, N., Kinoshita, M., Aikawa, I. and Ajioka, T., Appl. Phys. Lett. 56, 451 (1990).Google Scholar
Kwon, J., Dai, M., Halls, M. D. and Chabal, Y. J., Appl. Phys. Lett. 97, 162903 (2010).Google Scholar
Juppo, M., Alén, P., Ritala, M. and Leskelä, M., Chem. Vap. Deposition 7, 211 (2001).Google Scholar
Gunde, M. K., Physica B 292, 286 (2000).Google Scholar
Nakamura, M., Mochizuki, Y., Usami, K., Itoh, Y. and Nozaki, T., Solid State Communication 52, 1079 (1984).Google Scholar
Pai, P. G., Chao, S. S., Takagi, Y. and Lucovsky, G., J. Vac. Sci. Technol. A 4, 689 (1986).Google Scholar
Chu, Y. T., Bates, J. B., Whit, C. W. and Farlow, G. C., J. Appl. Phys. 64, 3727 (1988).Google Scholar
Goldstein, D., McCormick, J. and George, S., J. Phys. Chem. C. 112, 19530 (2008).Google Scholar