Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-27T14:27:07.538Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Goethite Nanostructured powder: Application in the Simultaneous Removal of Co(II) and Ni(II) Ions from Aqueous Solution

Published online by Cambridge University Press:  10 July 2018

C.R. Nangah*
Affiliation:
Department of Chemistry, University of Buea, Buea; Cameroon Physical and Theoretical Chemistry Laboratory, Department of Inorganic Chemistry, University of Yaounde I, Yaounde, Cameroon
T.G. Merlain
Affiliation:
Physical and Theoretical Chemistry Laboratory, Department of Inorganic Chemistry, University of Yaounde I, Yaounde, Cameroon
N.J. Nsami
Affiliation:
Physical and Theoretical Chemistry Laboratory, Department of Inorganic Chemistry, University of Yaounde I, Yaounde, Cameroon
C.P. Tubwoh
Affiliation:
Department of Chemistry, University of Buea, Buea; Cameroon
K.J. Mbadcam
Affiliation:
Physical and Theoretical Chemistry Laboratory, Department of Inorganic Chemistry, University of Yaounde I, Yaounde, Cameroon
D. Dodoo-Arhin
Affiliation:
Department of Materials Science and Engineering, University of Ghana, Accra-Ghana
*
*Corresponding Author: Nangah Che Randy, c4nangah@gmail.com
Get access

Abstract:

This study investigates the adsorption efficiency of goethite nanostructured powder for the simultaneous removal of cobalt and nickel ions. The nanostructured powder sample was synthesized via a chemical precipitation technique and characterized using SEM, FTIR-ATR and XRD techniques. From batch adsorption studies, maximum absorption for Co(II) and Ni(II) ions occurred at an equilibrium contact time of 80 min, with an adsorbent mass of 0.1 g, and at pH=7. Co(II) ions showed greater affinity to the nanoparticles as compared to Ni(II). The maximum quantities adsorbed were recorded as 148.5 mg/g for Co(II) and 110.6 mg/g for Ni(II) ions. The best isotherm model fit for both metal ions was the Freundlich model indicating heterogeneity of the surface binding sites. The pseudo-second order kinetic model was the best-fit model: an indication of a strong chemical adsorption between the adsorbent surface and metal ions. The findings show that the goethite nanostructured powder is a very effective adsorbent material and prominent candidate for the simultaneous removal of cobalt and nickel ions from water.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Parham, H., Zargar, B. and Shiralipour, R., (2012) J. Hazard. Mater 205-206, 94100.CrossRefGoogle Scholar
Sandra, F., Meredith, B., Bin, C., Jillian, F. B. and Hengzhong, Z., (2012) RSC Adv. 2, 67686772.Google Scholar
Pushpa, R. G., Annaselvi, A.G. and Subramaniam, P., (2013) Int. J. Nanomater. Biostruct. 3, 2630.Google Scholar
Mamadou, S. D., Jeremiah, S. D., Nora, S., Anita, S. and Richard, S., Nanotechnology applications for clean water, eds. Nora, S., Mamadou, D., Jeremiah, D., Anita, S. and Richard, S., (William Andrew Inc, USA, 2009), pp 585587.Google Scholar
Dhermendra, K. T., Behari, J. and Prasenjit, S., (2008) World Appl. Sci. J. 3, 417433Google Scholar
Kimberly, M. C., Yunfeng, L.U., Tonghua, Z., Jingjing, Z., Gary, M. and Vijay, J.: Nanotechnology applications for clean water, eds. Savage, N., Mamadou, D., Jeremiah, D., Anita, S. and Richard, S., (William Andrew Inc., USA, 2009), pp. 350.Google Scholar
Lodhia, J., Mandarano, G., Feris, J., Cowell, S. F., MacCallum, P. (2009). Biomed. Imag. Intervention J., 6.Google Scholar
Sajuna, M. G. and Mohanty, S. (2010). Int. J. of Eng. Sci. Tech., 2, 112.Google Scholar
Kazuharu, I. and Tsutomu, Y. (2002). Trans., 43, 20972103Google Scholar
Françoise, G., Philippe, R., François, L., Céline, R. and Egle, C. (2008). J. Phys. Chem. Solids, 10, 10161043.Google Scholar
Mariana, A., Elsa, E. S., and Elsa, H. R. (2008). Am. Mineral., 93, 584590.Google Scholar
Hexiong, Y., Ren, L., Robert, T. D. and Gelu, C. (2006). Acta Cryst. 62, 250252Google Scholar
Cornell, R. M. and Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, pp. 141143, 253-296.Google Scholar
Mamata, M., Rout, K., Gupta, S. K., Singh, P., Anand, S., and Mishra, B. K. (2010). J Nanopart Res, 12, 681686.Google Scholar
Liu, H., Chen, T., Ray, L., and Frost, H. (2013). Chemosphere xxx xxx–xxx.Google Scholar
Hala, H. and Yousef, H. (2012). Intl J. Eng. Sci. Technol., 4, 30183028Google Scholar
Chen, Yen-Hua, Li, Fu-An, (2010). J. Colloid Interface Sci., 347, 277281CrossRefGoogle Scholar
Nguyen, V. D., Kynicky, J., Ambrozova, P. and Adam, V. (2017). Mater., 10, 783CrossRefGoogle Scholar
Mohapatra, M., Mohapatra, L., Singh, P., Anand, S. and Mishra, B.K. (2010). Intl. J. Eng. Sci. Technol., 8, 89103Google Scholar
Apostoli, P., Cornelis, R., Duffus, J. and Lison, D. D: (2006) WHO 234, 70158.Google Scholar
Lee, G. H., Kim, S. H., Choi, B. J. and Huh, S. H.. (2004) J. Korean Phys. Soc. 45, 10191024.Google Scholar
Brunauer, S., Emmett, P. H., Teller, E., (1938). J. Am. Chem. Soc. 60(2), 309–319. Ceram. Soc. 83, 16491657.CrossRefGoogle Scholar
Vijayakumar, G., Tamilarasan, R., and Dharmendirakumar, M. (2012). J. Mater. Environ. Sci., 3, 157170.Google Scholar
Yagmur, E., Ozmak, M., Aktas, Z., (2008) Fuel 87 32783285.CrossRefGoogle Scholar
Mohapatra, M. and Anand, S., (2010) Int. J. Eng. Sci. Tech. 2 127146.Google Scholar
Zhao, Y., Liu, F., Qin, X., (2017) Chemosphere 180 373378CrossRefGoogle Scholar
Beyene, H. A. and Alemayehu, A.M., (2013) Bull. Chem. Soc. Ethiop. 27 3547Google Scholar
Maguie, K., Nsami, N., Daouda, K., Randy, C., Mbadcam, K., (2017). IRA Int. J. Appl. Sci. 8(1), 1830.Google Scholar
Agarry, S. E. and Aremu, M. O. (2012). Br. Biotechnol J. 2(1): 26–4CrossRefGoogle Scholar