Published online by Cambridge University Press: 30 June 2016
Carbonate intercalated Mg-Al layered double hydroxides (Mg-Al-CO3-LDH) were successfully produced by mechanical alloying process using different starting raw chemicals. Two distinct chemical reactions were activated at different milling times. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Results revealed that the structural characteristics of Mg-Al-CO3-LDH such as lattice parameters, unit cell volume, and the interlayer spacing were affected strongly by milling time. Based on the XRD data, the formation rate of pure Hydrotalcite (HT) was strongly influenced by the chemical composition of raw materials. Electron microscopic observation displayed that the final product had a platelet-like structure with an average particle size of 20-100 nm. Therefore, the synthesis of Mg-Al-CO3-LDH via a cost-effective solid-state method owing to simplicity and reproducibility can be a promising candidate especially for use in biomaterials and catalyst industries.