Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-19T06:47:27.287Z Has data issue: false hasContentIssue false

Synthesis and Photocatalytic Properties of Iron Disilicide/SiC Composite Powder

Published online by Cambridge University Press:  20 February 2017

Kensuke Akiyama*
Affiliation:
Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan. Tokyo Institute of Technology, Department of Materials Science and Engineering School, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
Yuu Motoizumi
Affiliation:
Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.
Tetsuya Okuda
Affiliation:
Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.
Hiroshi Funakubo
Affiliation:
Tokyo Institute of Technology, Department of Materials Science and Engineering School, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
Hiroshi Irie
Affiliation:
University of Yamanashi, Clean Energy Research Center, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
Yoshihisa Matsumoto
Affiliation:
Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.
Get access

Abstract

Semiconducting iron disilicide (β-FeSi2) island grains of 50-100 nanometers in size were formed on the surface of Au-coated 3C-SiC powder by metal-organic chemical vapor deposition. On the surface of 3C-SiC powder, the Au-Si liquidus phase was obtained via a Au-Si eutectic reaction, which contributed to the formation of the β-FeSi2 island grains. This β-FeSi2/SiC composite powder could evolve hydrogen (H2) from methyl-alcohol aqueous solution under irradiation of visible light with wavelengths of 420-650 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K., Nature 238, 37 (1972)CrossRefGoogle Scholar
Borisenko, V. ed., Semiconducting Silicides (Springer-Verlag, Berlin, 2000).CrossRefGoogle Scholar
Maeda, Y., ed, Science and Technology of Semiconducting Silicides and Related Materials (Shokabo, Tokyo, 2014).Google Scholar
Filonov, A. B., Migas, D. B., Shaposhnikov, V. L., Dorozhkin, N. N., Petrov, G. V., Borisenko, V. E., Henrion, W. and Lange, H., J. Appl. Phys. 79, 7708 (1996).Google Scholar
Miglio, L., Meregalli, V. and Jepsen, O., Appl. Phys. Lett. 75, 385 (1999).Google Scholar
Yoshimizu, M., Kobayashi, R., Saegusa, M., Takashima, T., Funakubo, H., Akiyama, K., Matsumoto, Y. and Irie, H., Chem. Comm. 51, 2818 (2015).Google Scholar
Akiyama, K., Ohya, S. and Funakubo, H., Thin Solid Films 461, 40 (2004).CrossRefGoogle Scholar
Akiyama, K., Ohya, S., Takano, H., Kieda, N. and Funakubo, H., Jpn. J. Appl. Phys. 40, L460 (2001).CrossRefGoogle Scholar
Akiyama, K., Ohya, S., Konuma, S., Numata, K. and Funakubo, H., J. Cryst. Growth 237-239, 1951 (2002).Google Scholar
Akiyama, K., Yokomizo, K., Kaneko, S. and Itakura, M., Appl. Surf. Sci. 256, 1244 (2009).CrossRefGoogle Scholar
Akiyama, K., Motoizumi, Y., Funakubo, H., Irie, H. and Matsumoto, Y., Jpn. J. Appl. Phys. 55, 06HC02 (2016).Google Scholar
Kubelka, P. and Munk, F., Z.Tech. Phys. 12, 593 (1931).Google Scholar
Shor, J. S., Osgood, R. M. and Kurtz, A. D., Appl. Phys. Lett. 60, 1001 (1992).Google Scholar
Lauermann, I., Memming, R. and Meissner, D., J. Electrochem. Soc. 144, 73 (1997).Google Scholar
van de Lagemaat, J., Vanmaekelbergh, D. and Kelly, J. J., J. Appl. Phys. 83, 6089 (1998).Google Scholar
Nishida, I., Phys. Rev. B7, 2710 (1973).CrossRefGoogle Scholar