Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T01:18:03.100Z Has data issue: false hasContentIssue false

TiO2 nanotubular films obtained in mixed organic-inorganic electrolyte and their photoelectrochemical and photocatalytic behavior

Published online by Cambridge University Press:  04 September 2017

C. Cuevas Arteaga*
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas-Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P.62209, Cuernavaca, Mor., México.
O. R. Davis Toledo
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas-Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P.62209, Cuernavaca, Mor., México.
A. M. Vera-Jimenez
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas-Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P.62209, Cuernavaca, Mor., México.
P. Mijaylova Nacheva
Affiliation:
Instituto Mexicano de Tecnología del Agua, Postgrado en Ingeniería Ambiental de la UNAM-Campus IMTA, Blvd. Paseo Cuauhnahuac 8532, Progreso, 62550Jiutepec, Mor., México.
*
*Corresponding Author. ccuevas@uaem.mx
Get access

Abstract

TiO2 nanotubular structures were formed on titanium foils through anodic oxidation using an electrolyte of Ethyleneglycol-H2O (97:3 Vol %)+0.25 M NH4F at a constant voltage of 60V. The anodized samples were analyzed in a FE-SEM obtaining the geometric parameters of the nanotubular arrays. The diameter and the length of the nanotubes were 112 nm and 65µm |respectively, whereas the wall thickness was 44 nm. Crystalline phase of TiO2 nanotubular films (TNTF) were determined by XRD after annealing at 500°C for 2 h, resulting high intensity peaks of anatase and low intensity peaks of rutile. Then, the crystallized samples were characterized from an optical, photoelectrochemical and photocatalytic point of view. The photoelectrochemical measurements were carried out in 0.5 M Na2SO4 solution using an 8 W UV lamp at a λ= 365 nm, which results were recorded at 0 bias during 10 min under darkness and illumination intervals of 1 min each. Photocatalytic performance of the TNTF was explored with a 10 mg/L methyl orange solution using an UV light at a wavelength of 365 nm. The changes in the concentration of the MO solution was determined from the calibration curve determined from the absorption spectra at different concentrations of MO (from 0.1 mg/L to 20 mg/L). It was observed an efficiency yield of 99.8% in the photocatalytic performance in presence of the TNTF.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Macak, J. M., Sirotna, K., Schmuki, P., Electrochim. Acta, 50, 3680 (2005).CrossRefGoogle Scholar
Gong, D., Grimes, C.A., Varghese, O.K., Chen, Z., Dickey, E. C., J. Mater. Res. 16, 3334 (2001)CrossRefGoogle Scholar
Mor, G. K., Varghese, O.K., Grimes, C.A., J. Mater. Res 18, 2588 (2003).Google Scholar
Yu, Xiaofeng, Li, Yongxiang, Wlodark, Wojtek, Kandasamy, Sasikaran, Kalantarzadeh, Kourosh. Sensors and Actuators B Chemical Journal, In Press.Google Scholar
Gong, D., Grimes, C.A., Barghese, O.K., J. Mater.Res. 16, 3331 (2001).Google Scholar
Zhao, J., Wang, X., Chen, R., Li, L., Solid State Commun. 134, 705 (2005).CrossRefGoogle Scholar
Varghese, Oomman K., Gong, Dawei, Paulose, Maggie, Ong, Keat G.. Dickey, Elizabeth C, and Gimes, Craig A., Adv. Mater. 15 624 (2003).Google Scholar
Varghese, Oomman K., Gong, Dawei, Paulose, Maggie, Ong, Keat G., Gimes, Craig A., Sensors and Actuators B 93, 338 (2003).Google Scholar
Macak, J.M., Tsuchiya, H., Berger, S., Bauer, S., Fujimoto, S., Schmuki, P., Chem. Phys. Lett. 428, 421 (2006).Google Scholar
Beranek, R., Hildebrand, H., and Schmuki, P., Electroch. And Solid-State Lett. 6, 3 (2006).Google Scholar
Bauer, S., Cléber, S., Schmuki, P., Electrom. Comm. 8, 1321 (2006).CrossRefGoogle Scholar
Macak, J. M., Tsuchiya, H., and Schmuki, P., Angew. Chem. Int. Ed. 44, 2100 (2005).Google Scholar
Taveira, L.V., Macák, J.M., Tsuchiya, H., Dick, L.F.P. and Schmuki, P., J. of the Electroch. Soc., 152-10, B405 (2005).CrossRefGoogle Scholar
Kim, E. Y., Park, J. H., Han, G. Y., J. of Power Sources, 184, 1 (2008). doi:10.1016/.jpowsour.2008.05.059.Google Scholar
Zwilling, V., Darque-ceeretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y. and Aucouturier, M., Surface and Interface Analysis 27, 629 (1999).Google Scholar
Vera-Jiménez, A. M., Melgoza-Alemán, R.M., Valladares-Cisneros, M.G., Cuevas-Arteaga, C., Journal of Nanomaterials,Vol 2015. doi:10.1155/2015/624073 Google Scholar
Mejía Sintillo, S., Cuevas Arteaga, C., Valladares Cisneros, M. G., Melgoza-Alemán, R.M., Proceedings of the XXX Congress of the Electrochemical Mexican Society and the 8th Meeting of the Mexican Section ECS, Veracruz, México, 2015.Google Scholar
Yu, X., Li, Y., Hr, E., ysnh, W., Zhu, N., Zadeh, K.K., Nanotechnology 17, 808 (2006).CrossRefGoogle Scholar
Zhang, Min, Lu, Dandan, Zhang, Zhihua, Guo, Yanru and Yangz, Jianjun, Journal of the Electrochemical Society, Vol. 162(8), 2015.Google Scholar
Li, Hailei, Cao, Lixin, Liu, Wei, Su, Ge, Dong, Bohua, Ceramics Int. 38, 5791 (2012).Google Scholar
Patel, N., Jaiswal, R., Warang, T., Scarduelli, g., Dashora, Alpa, Ahuja, B.L., Kothari, D. C., Miotello, A., Applied Catalysis B: Environmental, 150/151, 74 (2014).Google Scholar
Zinatizadeh, A.A.L, Zangeneh, H, Habibi, M., Journal of industrial and engineering chemistry. Vol 26, 1 (2015).Google Scholar