Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T17:27:57.892Z Has data issue: false hasContentIssue false

Umbite Type Zirconium Germanates for Cs Removal

Published online by Cambridge University Press:  13 February 2017

Ryan George
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
Joseph A. Hriljac*
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
Get access

Abstract

Pure and Nb-doped zirconium germanate materials of composition K2-xZr1-xNbxGe3O9.H2O where x = 0, 0.1, 0.2 and 0.3 with the structure of the natural mineral umbite have been prepared in high yield using hydrothermal synthesis methods. The parent material displays virtually no ion exchange of the K+ for Cs+ but the doped materials show rapidly enhanced exchange with replacement of ca. 70% of the K+ by Cs+ for the 30% doped material. Rietveld analysis of the powder X-ray diffraction data is consistent with no change in the unit cell parameters or K+ bonding prior to the exchange, hence we propose the improved property is due to the creation of cation defect sites within the pores of the material that facilities greater cation mobility and leads to exchange.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anthony, R. G., Phillip, C. V., Dosch, R. G., Waste Management 13, 503512 (1993).CrossRefGoogle Scholar
Poojary, D. M., Cahill, R. A. and Clearfield, A., Chem. Mater. 6, 23642368 (1994).Google Scholar
Nuclear Engineering International (2012). Available at: http://www.neimagazine.com/features/featurethe-ultimate-water-treatment-system/ (accessed 13 December 2016).Google Scholar
Anthony, R. G., Dosch, R. G., Philip, C. V. (Sandia National Laboratories), Patent US6110378 (1995).Google Scholar
Celestian, A. J., Kubicki, J. D., Hanson, J., Clearfield, A. and Parise, J. B., J. Amer. Chem. Soc. 130, 1168911694 (2008).CrossRefGoogle Scholar
Lin, Z., Rocha, J., Brandao, P., Ferreira, A., Esculcas, A. P., Pedrosa de Jesus, J. D., Philippou, A. and Anderson, M. W., J. Phys. Chem. B 101, 71147120 (1997).Google Scholar
Poojary, D. M., Bortun, A. I., Bortun, L. N. and Clearfield, A., Inorg. Chem. 36, 30723079 (1998).CrossRefGoogle Scholar
Lin, Z., Rocha, J. and Valente, A., Chem. Commun. 24892490 (1999).CrossRefGoogle Scholar
Plevert, J., Sanchez-Smith, R., Gentz, T. M., Li, H., Groy, T. L., Yaghi, O. M. and O’Keeffe, M., Inorg. Chem. 42, 59545959 (2003).Google Scholar
Larson, A. C. and Von Dreele, R. B., "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000)Google Scholar
Toby, B. H., J. Appl. Cryst. 34, 210213 (2001).Google Scholar
Fewox, C. S. and Clearfield, A., J. Phys. Chem. A 112, 25892597 (2008).CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T., Acta Cryst. B25, 925946 (1969).Google Scholar
Fewox, C. S., Kirumakki, S. R. and Clearfield, A., Chem. Mater. 19, 384 (2007).CrossRefGoogle Scholar