Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T06:16:38.376Z Has data issue: false hasContentIssue false

Voltage-controlled reactive magnetron sputtering of Nb-doped TiO2 films: electrical and optical properties

Published online by Cambridge University Press:  28 April 2016

Stefan Seeger*
Affiliation:
Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin, Germany
Klaus Ellmer
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Michael Weise
Affiliation:
Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin, Germany
Johanna Reck
Affiliation:
Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin, Germany
Rainald Mientus
Affiliation:
Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325, 12555 Berlin, Germany
*
Get access

Abstract

Niobium-doped TiO2 films as highly transparent conducting oxidic electrodes were prepared by reactive magnetron sputtering from a titanium target in an argon-oxygen gas flow. As-deposited films were amorphous and exhibited high resistivities ranging from 10 to 1×105 Ω cm in dependence on the deposition parameters. We stabilized the reactive magnetron sputtering deposition by adjusting the magnetron discharge voltage at a constant oxygen gas flow. The precise process control during the preparation of the as-deposited films was essential to gain low resistivities (10-3 Ω cm) and low optical absorption coefficients (α550nm < 2×103 cm-1) after annealing. These polycrystalline TiO2:Nb films on borosilicate glass show a quite high electron concentration > 1×1020 cm-3 and a high carrier mobility (≈ 8 cm2 V-1 s-1).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Natsuhara, H., Matsumoto, K., Yoshida, N., Itoh, T., Nonomura, S., Fukawa, M., and Sato, K.. Solar Energy Mater. Solar Cells 90, (2006) 28672880.CrossRefGoogle Scholar
Kasai, J., Hitosugi, T., Moriyama, M., Goshonoo, K., Hoang, N. L. H., Nakao, S., Yamada, N., and Hasegawa, T.. J. Appl. Phys. 107, (2010) 053110.CrossRefGoogle Scholar
Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T., and Hasegawa, T.. Appl. Phys. Lett. 86, (2005) 252101.CrossRefGoogle Scholar
Hirose, Y., Yamada, N., Nakao, S., Hitosugi, T., Shimada, T., and Hasegawa, T.. Phys. Rev. B 79, (2009) 165108.CrossRefGoogle Scholar
Seeger, S., Ellmer, K., Weise, M., Gogova, D., Abou-Ras, D., and Mientus, R.. Thin Solid Films, (2015).Google Scholar
Kurita, D., Ohta, S., Sugiura, K., Ohta, H., and Koumoto, K.. J. Appl. Phys. 100, (2006) 096105.CrossRefGoogle Scholar
Hoang, N. L. H., Yamada, N., Hitosugi, T., Kasai, J., Nakao, S., Shimada, T., and Hasegawa, T.. Appl. Phys. Express 1, (2008) 115001.CrossRefGoogle Scholar
Hitosugi, T., Yamada, N., Hoang, N. L. H., Kasai, J., Nakao, S., Shimada, T., and Hasegawa, T.. Thin Solid Films 517, (2009) 31063109.CrossRefGoogle Scholar
Yamada, N., Hitosugi, T., Kasai, J., Hoang, N. L. H., Nakao, S., Hirose, Y., Shimada, T., and Hasegawa, T.. J. Appl. Phys. 105, (2009) 123702.CrossRefGoogle Scholar
Tonooka, K., Chiu, T.-W., and Kikuchi, N.. Appl. Surf. Sci. 255, (2009) 96959698.CrossRefGoogle Scholar
Oka, N., Sanno, Y., Jia, J., Nakamura, S.-i., and Shigesato, Y.. Appl. Surf. Sci. 301, (2014) 551556.CrossRefGoogle Scholar
Berg, S., and Nyberg, T.. Thin Solid Films 476, (2005) 215230.CrossRefGoogle Scholar
Neubert, M., Cornelius, S., Fiedler, J., Gebel, T., Liepack, H., Kolitsch, A., and Vinnichenko, M.. J. Appl. Phys. 114, (2013) 083707.CrossRefGoogle Scholar
Depla, D., Haemers, J., and De Gryse, R.. Thin Solid Films 515, (2006) 468471.CrossRefGoogle Scholar