Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T20:37:07.115Z Has data issue: false hasContentIssue false

Wetting Behaviors of an Underwater Oil Droplet on Structured Surfaces

Published online by Cambridge University Press:  01 March 2016

Shuai Chen*
Affiliation:
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Jiadao Wang
Affiliation:
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Darong Chen
Affiliation:
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Get access

Abstract

In this study, the wetting behaviors of an underwater oil droplet on structured surfaces were investigated using molecular dynamics simulations and experiments. The wetting states and contact angles of the underwater oil droplet on different hydrophobic surfaces were simulated. The simulation results showed that there were three kinds of equilibrium states on the pillar surfaces: the Wenzel, cross, and Cassie states. Moreover, the equilibrium state of the underwater oil droplet transformed from a Wenzel to Cassie state when the water contact angle decreased. The contact angle of the underwater oil droplet increased as the water contact angle decreased. Furthermore, the wetting behaviors of the underwater oil droplet on rough polytetrafluoroethylene and silicon surfaces were studied in experiments. The experimental results also indicated that the contact angle of the underwater oil droplet increased as the water contact angle decreased, which corresponded well with the simulation results.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jin, M., Wang, J., Yao, X., Liao, M., Zhao, Y. and Jiang, L., Adv. Mater. 23, 28612864 (2011).CrossRefGoogle Scholar
Li, B., Wu, L., Li, L., Seeger, S., Zhang, J. and Wang, A., ACS Appl. Mater. Interfaces 6, 1158111588 (2014).CrossRefGoogle Scholar
Chen, P.-C. and Xu, Z.-K., Sci. Rep. 3, 2776 (2013).CrossRefGoogle Scholar
Wang, C.-F., Tzeng, F.-S., Chen, H.-G. and Chang, C.-J., Langmuir 28, 1001510019 (2012).CrossRefGoogle ScholarPubMed
Kajitvichyanukul, P., Hung, Y.-T. and Wang, L. K., Handbook of Environmental Engineering, Vol. 13: Membrane and Desalination Technologies, (The Humana Press Inc., New York 2011), p. 639.CrossRefGoogle Scholar
Zhang, W., Shi, Z., Zhang, F., Liu, X., Jin, J. and Jiang, L., Adv. Mater. 25, 20712076 (2013).CrossRefGoogle ScholarPubMed
Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L. and Zhu, D., Angew. Chem. Int. Ed. 43, 20122014 (2004).CrossRefGoogle Scholar
Zhang, J. and Seeger, S., Adv. Funct. Mater. 21, 46994704 (2011).CrossRefGoogle Scholar
Wang, C.-F. and Lin, S.-J., ACS Appl. Mater. Interfaces 5, 88618864 (2013).CrossRefGoogle ScholarPubMed
Tu, C.-W., Tsai, C.-H., Wang, C.-F., Kuo, S.-W. and Chang, F.-C., Macromol. Rapid Commun. 28, 22622266 (2007).CrossRefGoogle Scholar
Chu, Z., Feng, Y. and Seeger, S., Angew. Chem. Int. Ed. 53, 213 (2014).Google Scholar
Chen, S., Wang, J. and Chen, D., J. Phys. Chem. C 118, 1852918536 (2014).CrossRefGoogle Scholar
See http://accelrys.com/ for information about Materials Studio software and packages.Google Scholar
Hong, S. D., Ha, M. Y. and Balachandar, S., J. Colloid Interface Sci. 339, 187195 (2009).CrossRefGoogle Scholar
Berendsen, H. J. C., Grigera, J. R. and Straatsma, T. P., J. Phys. Chem. 91, 62696271 (1987).CrossRefGoogle Scholar
Wilkes, C. E., Folt, V. L. and Krimm, S., Macromolecules 6, 235237 (1973).CrossRefGoogle Scholar
Kirby, B. J., Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. (Cambridge University Press: Cambridge, U.K. 2010).Google Scholar
Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids. (Oxford University Press: Oxford, U.K. 1989).Google Scholar
Seveno, D., Blake, T. D., Goossens, S. and Coninck, J. D., Langmuir 27, 1495814967 (2011).CrossRefGoogle Scholar
Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T. and Koumoutsakos, P., J. Phys. Chem. B 107, 13451352 (2003).CrossRefGoogle Scholar
Argyris, D., Tummala, N. R. and Striolo, A., J. Phys. Chem. C 112, 1358713599 (2008).CrossRefGoogle Scholar
Plimpton, S., Comput, J.. Phys. 117, 119 (1995).Google Scholar
Ryckaert, J. P., Cicotti, G., and Berendsen, H. J. C., J. Comput. Phys. 23, 327341 (1977).CrossRefGoogle Scholar
Shi, B., Sinha, S. and Dhir, V. K., J. Chem. Phys. 124, 204715 (2006).CrossRefGoogle Scholar
Yong, X. and Zhang, L. T., Langmuir 25, 50455053 (2009).CrossRefGoogle Scholar
Chen, S., Wang, J., Ma, T., Chen, D., Chem, J.. Phys. 140, 021412 (2014).Google Scholar