Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-15T14:41:51.026Z Has data issue: false hasContentIssue false

Diluted Magnetic Semiconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Diluted magnetic semiconductors (DMS) are semiconducting alloys whose lattice is partly made of substitutional magnetic ions. The most extensively studied materials of this type are the alloys, in which a fraction of the group II sublattice is replaced at random by Mn. The entire family of ternary alloys, along with their crystal structure and corresponding ranges of composition, is listed in Table I. Over the past decade, these alloys have attracted a growing scientific interest because of new fundamental effects in semiconductor physics and magnetism in these materials and because of their potential applications in optical nonreciprocal devices, solid state lasers, flat panel displays, infrared detectors, and other optoelectronic applications.

The increasing popularity of this field can be attributed to the broad variety of fascinating problems offered by the study of the alloys. To begin with, there is an interest in the semiconducting properties per se — for instance, the understanding of the electronic band structure and its variation with alloy composition. As in other ternary alloys, the band parameters and the lattice constant can be “tuned” by controlling the alloy composition, opening the door to band-gap engineering and lattice matching in the context of epitaxially grown superlattices and het-erostructures. The random distribution of Mn atoms with a well-characterized antiferromagnetic Mn-Mn exchange interaction provides an ideal system for studying fundamental questions in disordered magnetism. The sp-d exchange interaction between the spins of band electrons and the localized moments of the Mn atoms constitutes a unique interplay between semiconductor physics and magnetism. This leads to unusual magneto-transport and magneto-optic phenomena such as an extremely large Faraday rotation, giant negative magneto-resistance, and a magnetic-field-induced metal-insulator transition. Finally, the potential technological importance of DMS is also being recognized. For example, the large Faraday rotation holds promise of DMS applications as optical isolators, modulators, and circulators. We will briefly introduce some of the exciting research problems offered by the study of DMS. More detailed information is available in several extensive reviews and compendia.

Type
Magnetism and Magnetic Materials
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Diluted Magnetic Semiconductors (Semimagnetic) Semiconductors, edited by Aggarwal, R.L., Furdyna, J.K., and von Molnar, S. (Mater, Res. Soc. Symp. Proc. 89, Pittsburgh, PA, 1987).Google Scholar
2.Semiconductors and Semimetals, Vol. 25, edited by Furdyna, J.K. and Kossut, J.; Willardson, R.K. and Beer, A.C., treatise editors; (Academic Press, Boston, 1988).Google Scholar
3.Furdyna, J.K., J. Appl. Phys. (1988) (in press).Google Scholar
4.Larson, B.E., Hass, K.C., Ehrenreich, H., and Carlsson, A.E., Phys. Rev. B 37 (1988) p. 4137.CrossRefGoogle Scholar
5.Larson, B.E., Hass, K.C., Ehrenreich, H., and Carlsson, A.E., Solid State Commun. 56 (1985) p. 347.CrossRefGoogle Scholar
6.Lewicki, A., Spalek, J., Furdyna, J.K., and Galazka, R.R., Phys. Rev. B 37 (1988) p. 1860.CrossRefGoogle Scholar
7.McAlister, S.P., Furdyna, J.K., and Giriat, W., Phys. Rev. B 29 (1984) p. 1310.CrossRefGoogle Scholar
8.Galazka, R.R., Nagata, S., and Keesom, P.H., Phys. Rev. B 22 (1980) p. 3344.CrossRefGoogle Scholar
9.Twardowski, A., Denissen, C.J.M., de Jonge, W.J.M., de Waele, A.T.A.M., Demianiuk, M., and Triboulet, R., Solid State Commun. 59 (1986) p. 199.CrossRefGoogle Scholar
10.Novak, M.A., Symko, O.G., Zheng, D.J., and Oseroff, S., Physica 126B (1984) p. 469.Google Scholar
11.Giebultowicz, T., Minor, W., Kepa, H., Ginter, J., and Galazka, R.R.. J. Magn. Magn. Mater. 30 (1982) p. 215.CrossRefGoogle Scholar
12.Dolling, G., Holden, T.M., Sears, V.F., Furdyna, J.K., and Giriat, W., J. Appl. Phys. 53 (1982) p. 7644.CrossRefGoogle Scholar
13.Geschwind, S., Ogielski, A.T., Devlin, G., Hegarty, J., and Bridenbaugh, P., J. Appl. Phys. 63 (1988) p. 3291.CrossRefGoogle Scholar
14.Gaj, J.A., Planel, R., and Fishman, R.G., Solid State Commun. 29 (1979) p. 435.CrossRefGoogle Scholar
15.Spalek, J., Lewicki, A., Tarnawski, Z., Furdyna, J.K., Galazka, R.R., and Obuszko, Z., Phys. Rev. B 33 (1986) p. 3407.CrossRefGoogle Scholar
16.Samarth, N. and Furdyna, J.K., Phys. Rev. B (1988) (in press).Google Scholar
17.Ansaldo, E.J., Noakes, D.R., Keitel, R., Kreitzman, S.R., Brewer, J.H., and Furdyna, J.K., Phys. Lett. A 120 (1987) p. 483.CrossRefGoogle Scholar
18.Ayadi, M., Ferre, J., Mauger, A., and Triboulet, R., Phys. Rev. Lett. 57 (1986) p. 1165.CrossRefGoogle Scholar
19.Giebultowicz, T.M., Rhyne, J.J., Debska, U., and Furdyna, J.K., J. Appl. Phys. 61 (1987) p. 3540.CrossRefGoogle Scholar
20.Furdyna, J.K. and Samarth, N., J. Appl. Phys. 61 (1987) p. 3526.CrossRefGoogle Scholar
21.Bartholomew, D.U., Furdyna, J.K., and Ramdas, A.K., Phys. Rev. B 34 (1986) p. 6943.CrossRefGoogle Scholar
22.Wojtowicz, T. and Mycielski, A., Physica B 117 & 118 (1983) p. 476.Google Scholar
23.Wojtowicz, T., Dietl, T., Sawicki, M., Plesiewicz, W., and Jaroszynski, J., Phys. Rev. Lett. 56 (1986) p. 2419.CrossRefGoogle Scholar
24.Kolodziejski, L.A., Bonsett, T.C., Gunshor, R.L., Datta, S., Bylsma, R.B., Becker, W.M., and Otsuka, N., Appl. Phys. Lett. 45 (1984) p. 440.CrossRefGoogle Scholar
25.Bicknell, R.N., Yanks, R.W., Giles-Taylor, N.C., Blanks, D.K., Buckland, E.L., and Schetzina, J.F., Appl. Phys. Lett. 45 (1984) p. 92.CrossRefGoogle Scholar
26.Kolodziejski, L.A., Gunshor, R.L., Bonsett, T.C., Venkatasubramaniam, R., Datta, S., Bylsma, R.B., Becker, W.M., and Otsuka, N., Appl. Phys. Lett. 47 (1985) p. 169.CrossRefGoogle Scholar
27.Harris, K.A., Hwang, S., Lansari, Y.. Cook, J.W. Jr., and Schetzina, J.F., Appl. Phys. Lett. 49 (1986) p. 713.CrossRefGoogle Scholar
28.Chu, X., Sivanathan, S., and Faune, J.P., Appl. Phys. Lett. 50 (1987) p. 597.CrossRefGoogle Scholar
29.Herman, M.A., Jylha, O.L., and Pessa, M., J. Cryst. Growth 66 (1984) p. 480.CrossRefGoogle Scholar
30.Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Gu, B.P., Hefetz, Y., and Nurmikko, A.V., J. Cnyst. Growth 81 (1987) p. 491.CrossRefGoogle Scholar
31.Awschalom, D.D., Hong, J.M., Chang, L.L., and Grinstein, G., Phys. Rev. Lett. 59 (1987) p. 1733.CrossRefGoogle Scholar
32.Furdyna, J.K., Kossut, J., and Ramdas, A.K., in Optical Properties of Narrow-Gap Low-Dimensional Structures, edited by Sotomayor-Torres, C.M.et al. (Plenum, New York, 1987) p. 135.CrossRefGoogle Scholar
33.Bylsma, R.B., Becker, W.M., Bonsett, T.C., Kolodziejski, L.A., Gunshor, R.L., Yamanishi, M., and Datta, S., Appl. Phys. Lett. 47 (1985) p. 1039.CrossRefGoogle Scholar
34.Isaacs, E.D., Heiman, D., Zayhowski, J.J., Bicknell, R.N., and Schetzina, J.F., Appl. Phys. Lett. 48 (1986) p. 275.CrossRefGoogle Scholar
35.Mach, R. and Muller, G.O., Phys. Stat. Solidi (a) 69 (1982) p. 11.CrossRefGoogle Scholar
36.Furdyna, J.K., J. Vac. Sci. Technol. 21 (1982) p. 220.CrossRefGoogle Scholar
37.Turner, A.E., Gunshor, R.L., and Datta, S., Applied Optics 22 (1983) p. 3152.CrossRefGoogle Scholar
38.Butler, M.A., Martin, S.J., and Baughman, R.J., Appl. Phys. Lett. 49 (1986) p. 1053.CrossRefGoogle Scholar
39.Geyer, F.F. and Fan, H.Y., IEEE J. Quantum Electron. QE-16 (1980) p. 1365.CrossRefGoogle Scholar