Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-25T04:30:03.889Z Has data issue: false hasContentIssue false

Enzyme-functionalized DNA nanostructures as tools for organizing and controlling enzymatic reactions

Published online by Cambridge University Press:  08 December 2017

Guido Grossi
Affiliation:
Interdisciplinary Nanoscience Center, Aarhus University, Denmark; ggrossi@inano.au.dk
Andreas Jaekel
Affiliation:
Center of Medical Biotechnology, Bionanotechnology Group, University of Duisburg-Essen, Germany; jaekel@uni-due.de
Ebbe Sloth Andersen
Affiliation:
Interdisciplinary Nanoscience Center, Aarhus University, Denmark; esa@inano.au.dk
Barbara Saccà
Affiliation:
Center of Medical Biotechnology, Bionanotechnology Group, University of Duisburg-Essen, Germany; barbara.sacca@uni-due.de
Get access

Abstract

Enzyme sequestration and compartmentalization are key factors in cell signaling and metabolism, evolved to solve the challenges of slow turnover rates, undesired pathway intermediates, and competing reactions. Inspired by nature, DNA nanoengineers have developed organizational systems to confine enzymes in two- and three-dimensional environments and to actuate them in response to precise external stimuli. DNA-scaffolded enzymes have applications for not only the in vitro reconstitution of proteins, peptides, and other molecular assemblies, but also to enable the generation of advanced functional nanomaterials for the development of, for example, fuel cells, biosensors, and drug delivery systems. Despite several challenges that still remain unsolved, the use of DNA scaffolds to arrange enzymes in space and time will help to realize biochemical nanofactories, where multiple components work together to produce novel and improved functional materials, rivaling the efficiency of biological systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kuchler, A., Yoshimoto, M., Luginbuhl, S., Mavelli, F., Walde, P., Nat. Nanotechnol. 11, 409 (2016).Google Scholar
Chen, A.H., Silver, P.A., Trends Cell Biol. 22, 662 (2012).CrossRefGoogle Scholar
Simmel, F., Schulman, R., MRS Bull. 42 (12), 913 (2017).Google Scholar
Seeman, N.C., Nature 421, 427 (2003).Google Scholar
Rothemund, P.W.K., Nature 440, 297 (2006).Google Scholar
Gothelf, K., MRS Bull. 42 (12), 897 (2017).Google Scholar
Muller, J., Niemeyer, C.M., Biochem. Biophys. Res. Commun. 377, 62 (2008).Google Scholar
Conrado, R.J., Wu, G.C., Boock, J.T., Xu, H., Chen, S.Y., Lebar, T., Turnsek, J., Tomsic, N., Avbelj, M., Gaber, R., Koprivnjak, T., Mori, J., Glavnik, V., Vovk, I., Bencina, M., Hodnik, V., Anderluh, G., Dueber, J.E., Jerala, R., DeLisa, M.P., Nucleic Acids Res. 40, 1879 (2012).Google Scholar
Wilner, O.I., Shimron, S., Weizmann, Y., Wang, Z.G., Willner, I., Nano Lett. 9, 2040 (2009).Google Scholar
Liu, M., Fu, J., Hejesen, C., Yang, Y., Woodbury, N.W., Gothelf, K., Liu, Y., Yan, H., Nat. Commun. 4, 2127 (2013).Google Scholar
Zhou, C., Yang, Z., Liu, D., J. Am. Chem. Soc. 134, 1416 (2012).Google Scholar
Xin, L., Zhou, C., Yang, Z., Liu, D., Small 9, 3088 (2013).Google Scholar
Engelen, W., Janssen, B.M., Merkx, M., Chem. Commun. (Camb.) 52, 3598 (2016).Google Scholar
Endo, M., Katsuda, Y., Hidaka, K., Sugiyama, H., Angew. Chem. Int. Ed. Engl. 49, 9412 (2010).Google Scholar
Suzuki, Y., Endo, M., Katsuda, Y., Ou, K., Hidaka, K., Sugiyama, H., J. Am. Chem. Soc. 136, 211 (2014).Google Scholar
Suzuki, Y., Endo, M., Canas, C., Ayora, S., Alonso, J.C., Sugiyama, H., Takeyasu, K., Nucleic Acids Res. 42, 7421 (2014).Google Scholar
Kobayashi, Y., Misumi, O., Odahara, M., Ishibashi, K., Hirono, M., Hidaka, K., Endo, M., Sugiyama, H., Iwasaki, H., Kuroiwa, T., Shikanai, T., Nishimura, Y., Science 356, 631 (2017).Google Scholar
Chhabra, R., Sharma, J., Ke, Y., Liu, Y., Rinker, S., Lindsay, S., Yan, H., J. Am. Chem. Soc. 129, 10304 (2007).Google Scholar
Rinker, S., Ke, Y., Liu, Y., Chhabra, R., Yan, H., Nat. Nanotechnol. 3, 418 (2008).Google Scholar
Fu, J., Liu, M., Liu, Y., Woodbury, N.W., Yan, H., J. Am. Chem. Soc. 134, 5516 (2012).Google Scholar
Wilner, O.I., Weizmann, Y., Gill, R., Lioubashevski, O., Freeman, R., Willner, I., Nat. Nanotechnol. 4, 249 (2009).Google Scholar
Fu, J., Yang, Y.R., Johnson-Buck, A., Liu, M., Liu, Y., Walter, N.G., Woodbury, N.W., Yan, H., Nat. Nanotechnol. 9, 531 (2014).Google Scholar
Ke, G., Liu, M., Jiang, S., Qi, X., Yang, Y.R., Wootten, S., Zhang, F., Zhu, Z., Liu, Y., Yang, C.J., Yan, H., Angew. Chem. Int. Ed. Engl. 55, 7483 (2016).Google Scholar
Rasmussen, M., Abdellaoui, S., Minteer, S.D., Biosens. Bioelectron. 76, 91 (2016).CrossRefGoogle Scholar
Van Nguyen, K., Giroud, F., Minteer, S.D., J. Electrochem. Soc. 161, H930 (2014).Google Scholar
Chen, J.H., Seeman, N.C., Nature 350, 631 (1991).Google Scholar
Banerjee, A., Bhatia, D., Saminathan, A., Chakraborty, S., Kar, S., Krishnan, Y., Angew. Chem. Int. Ed. Engl. 52, 6854 (2013).Google Scholar
Crawford, R., Erben, C.M., Periz, J., Hall, L.M., Brown, T., Turberfield, A.J., Kapanidis, A.N., Angew. Chem. Int. Ed. Engl. 52, 2284 (2013).Google Scholar
Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., Kjems, J., Nature 459, 73 (2009).Google Scholar
Kuzuya, A., Komiyama, M., Chem. Commun. (Camb.) 28, 4182 (2009).Google Scholar
Douglas, S.M., Bachelet, I., Church, G.M., Science 335, 831 (2012).Google Scholar
Perrault, S.D., Shih, W.M., ACS Nano 8, 5132 (2014).Google Scholar
Sprengel, A., Lill, P., Stegemann, P., Bravo-Rodriguez, K., Schoneweiss, E.C., Merdanovic, M., Gudnason, D., Aznauryan, M., Gamrad, L., Barcikowski, S., Sanchez-Garcia, E., Birkedal, V., Gatsogiannis, C., Ehrmann, M., Sacca, B., Nat. Commun. 8, 14472 (2017).Google Scholar
Linko, V., Eerikainen, M., Kostiainen, M.A., Chem. Commun. (Camb.) 51, 5351 (2015).Google Scholar
Douglas, A.J., Young, J.A., Nature 393, 152 (1998).Google Scholar
Nomura, S.M., Tsumoto, K., Hamada, T., Akiyoshi, K., Nakatani, Y., Yoshikawa, K., Chembiochem 4, 1172 (2003).Google Scholar
Zhu, T.F., Szostak, J.W., J. Am. Chem. Soc. 131, 5705 (2009).Google Scholar
Zhao, Z., Fu, J., Dhakal, S., Johnson-Buck, A., Liu, M., Zhang, T., Woodbury, N.W., Liu, Y., Walter, N.G., Yan, H., Nat. Commun. 7, 10619 (2016).Google Scholar
Gray, M.J., Wholey, W.-Y., Wagner, N.O., Cremers, C.M., Mueller-Schickert, A., Hock, N.T., Krieger, A.G., Smith, E.M., Bender, R.A., Bardwell, J.C.A., Jakob, U., Mol. Cell 53, 689 (2014).Google Scholar
Zhang, Y., Tsitkov, S., Hess, H., Nat. Commun. 7, 13982 (2016).Google Scholar
Gao, Y.N., Roberts, C.C., Zhu, J., Lin, J.L., Chang, C.E.A., Wheeldon, I., ACS Catal. 5, 2149 (2015).Google Scholar
Lin, J.L., Wheeldon, I., ACS Catal. 3, 560 (2013).Google Scholar
Glettenberg, M., Niemeyer, C.M., Bioconjug. Chem. 20, 969 (2009).Google Scholar
Rudiuk, S., Venancio-Marques, A., Baigl, D., Angew. Chem. Int. Ed. Engl. 51, 12694 (2012).Google Scholar
Timm, C., Niemeyer, C.M., Angew. Chem. Int. Ed. Engl. 54, 6745 (2015).Google Scholar
Grossi, G., Jepsen, M.D.E., Kjems, J., Andersen, E.S., Nat. Commun. 8, 992 (2017).Google Scholar
Freeman, R., Sharon, E., Tel-Vered, R., Willner, I., J. Am. Chem. Soc. 131, 5028 (2009).Google Scholar
Freeman, R., Sharon, E., Teller, C., Willner, I., Chem. Eur. J. 16, 3690 (2010).Google Scholar
Cassinelli, V., Oberleitner, B., Sobotta, J., Nickels, P., Grossi, G., Kempter, S., Frischmuth, T., Liedl, T., Manetto, A., Angew. Chem. Int. Ed. Engl. 54, 7795 (2015).Google Scholar
Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., Sugiyama, H., J. Am. Chem. Soc. 133, 14488 (2011).Google Scholar
Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Hogberg, B., Nature 523, 441 (2015).Google Scholar
Zhang, F., Jiang, S., Wu, S., Li, Y., Mao, C., Liu, Y., Yan, H., Nat. Nanotechnol. 10, 779 (2015).Google Scholar
Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe, M., Science 352, 1534 (2016).Google Scholar
Mikkila, J., Eskelinen, A.P., Niemela, E.H., Linko, V., Frilander, M.J., Torma, P., Kostiainen, M.A., Nano Lett. 14, 2196 (2014).Google Scholar
Rodrigues, R.C., Ortiz, C., Berenguer-Murcia, A., Torres, R., Fernandez-Lafuente, R., Chem. Soc. Rev. 42, 6290 (2013).Google Scholar
Geng, C., Paukstelis, P.J., J. Am. Chem. Soc. 136, 7817 (2014).Google Scholar
Raushel, F.M., Thoden, J.B., Holden, H.M., Acc. Chem. Res. 36, 539 (2003).Google Scholar