Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T04:15:23.075Z Has data issue: false hasContentIssue false

Long Wavelength Laser Diode Reliability and Lattice Imperfections

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Reliable long wavelength laser diodes emitting in the 1.30−1.55 μm regime with an expected operating life greater than 25 years for optical fiber communication applications are now fabricated using a combined heavy screening and accelerated aging process. For a given laser structure, the reliability of the devices depends intricately on both the crystalline perfection of the complex buried-heteroepitaxial semiconductor structures as well as the qualities of structures external to the semiconductor, such as electrical contact, dielectric coating, bonding, and packaging structures external to the semiconductor. The former (crystalline perfection) determines the intrinsic property of the laser, while the latter qualities (electrical contact, etc.) determine the contact resistance, parasitic capacitance, heating, and mechanical and thermal stresses to which a packaged laser device is subjected during operation. Since device heating and external stresses both degrade laser performance and accelerate permanent damage—through processes such as crystalline defect formation, current leakage path development, and doping profile redistribution—a reliable laser device, therefore, requires both a perfect semiconductor structure and also a high-quality external structure. Realistically, however, this may not be easily achievable, especially when a development program is limited in resource and time. Proper choice of the critical material issues in a development process becomes crucial to the success of the program.

Type
Materials Reliability in Microelectronics
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nash, F.R., Joyce, W.B., Hartman, R.L., Gordon, E.I., and Dixon, R.W., AT&T Tech. J. 64 (1985) p. 671.Google Scholar
2.Joyce, W.B., Liou, K-Y., Nash, F.R., Bossard, P.R., and Hartman, R.L., in Reference 1, p. 717.Google Scholar
3.Nash, F.R., Sundburg, W.J., Hartman, R.L., Pawlik, J.R., Ackerman, D.A., Dutta, N.K., and Dixon, R.W., in Reference 1, p. 809.Google Scholar
4.Nash, F.R., in Degradation Mechanisms in III-V Compound Semiconductor Devices and Structures, edited by Swaminithan, V., Pearton, S.J., and Manasreh, O. (Mater. Res. Soc. Symp. Proc. 184, Pittsburgh, PA, 1990) p. 3.Google Scholar
5.Zilko, J.L., Ketelsen, L.J.P., Twu, Y., Wilt, D.P., Napholtz, S.G., Blaha, J.P., Strege, K.E., Riggs, V.G., Haren, D. L. Van, Leung, S.Y., Nitzsche, P.M., Long, J.A., Roxlo, C.B., Przyblek, G., Lopata, J., Focht, M.W., and Koszi, L.A., IEEE J. Quantum Electron. 25 (10) (1989) p. 2091.CrossRefGoogle Scholar
6.Dutta, N.K., AT&T Tech. J. 68 (1989) p. 5.Google Scholar
7.Tsang, W.T., Choa, E.S., Wu, M.C., Chen, Y.K., Logan, R.A., Chu, S.N.G., and Sergent, A.M., Appl. Phys. Lett. 60 (1992) p. 2580.CrossRefGoogle Scholar
8.Chu, S.N.G., Nakahara, S., Twigg, M.E., Koszi, L.A., Flynn, E.J., Chin, A.K., Segner, B.P., and Johnston, W.D. Jr., J. Appl. Phys. 63 (1988) p. 611.CrossRefGoogle Scholar
9.Chu, S.N.G. and Nakahara, S., Appl. Phys. Lett. 56 (1990) p. 434.CrossRefGoogle Scholar
10.Chu, S.N.G. and Nakahara, S., Appl. Phys. Lett. 62 (1993) p. 917.CrossRefGoogle Scholar
11.Chu, S.N.G., Logan, R.A., and Temkin, H., J. Appl. Phys. 61 (1987) p. 2434.CrossRefGoogle Scholar
12.Chu, S.N.G., in Reference 4, p. 135.Google Scholar
13.Chu, S.N.G., Nakahara, S., Luther, L.C., and Krautter, H.W., J. Appl. Phys. 69 (1991) p. 6974.CrossRefGoogle Scholar
14.Ueda, O., in Reference 4, p. 125.Google Scholar
15.Ueda, O., J. Electrochem. Soc. 135 (1988) p. 11C.CrossRefGoogle Scholar
16.Fukuda, M., Reliability and Degradation of Semiconductor Lasers and LEDs (Artech House, Boston, 1991).Google Scholar
17.Gangert, U., Briggs, A.T., Goodwin, A.R., and Charsley, P., Inst. Phys. Conf. Ser. 117 (1991) p. 581.Google Scholar
18.de Cooman, B.C., Bulle-Lieuwma, C.W.T., de Poorter, J. A., and Nijman, W., J. Appl. Phys. 67 (1990) p. 3919.CrossRefGoogle Scholar
19.Barnes, P.A. and Paoli, T.L., IEEE J. Quantum Electron. QE-12 (10) (1976) p. 633.CrossRefGoogle Scholar
20.Dixon, R.W., Bell System Tech. J. 55 (1976) p. 973.CrossRefGoogle Scholar
21.Murotani, T., Oomura, E., Higuchi, H., Namizaki, H., and Susaki, W., Electron. Lett. 16 (1980) p. 566.CrossRefGoogle Scholar
22.Wilt, D.P., Long, J., Dautremont-Smith, W.C., Focht, M.W., Shen, T.M., and Hartman, R.L., Electron. Lett. 22 (16) (1986) p. 869.CrossRefGoogle Scholar
23.Chu, S.N.G., AT&T Bell Laboratories, unpublished work.Google Scholar
24.Ueda, O., Wakao, K., Kanija, S., Yamaguchi, A., Isozumi, S., and Umebu, I.,J. Appl. Phys. 58 (1985) p. 3996.CrossRefGoogle Scholar
25.Both, W., Erbert, G., Klehr, A., Rimpler, R., Stadermann, G., and Zeimer, U., IEEE Proc., Vol. 134, Pt. J, No. 1, (1987) p. 95.Google Scholar
26.Imai, H., Morimoto, M., Sudo, H., Fujiwara, I., and Tankusugawa, M., Appl. Phys. Lett. 33 (1978) p. 1011.CrossRefGoogle Scholar
27.Henry, C.H., Petroff, P.M., Logan, R.A., and Merrit, F.M., J. Appl. Phys. 50 (1979) p. 3721.CrossRefGoogle Scholar