Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T17:21:54.933Z Has data issue: false hasContentIssue false

Materials Issues in the Space Environment

Published online by Cambridge University Press:  03 April 2017

Get access

Abstract

To explore higher, farther, and faster, scientists and engineers have developed advanced materials for manned spacecraft and satellites for a range of sophisticated applications in transportation, global positioning, exploration, and communication. Materials used in space are exposed to vacuum, intense ultraviolet radiation from the sun, and ionizing radiation that results in material damage as well as charging (electrostatic discharge effects), micrometeoroids and debris impacts, and thermal cycling (typically from -175 to 160°C). In terms of materials degradation in space, the low Earth orbit (LEO), where LEO is defined as 200—1000 km above the Earth’s surface, is a particularly challenging synergistic environment, since atomic oxygen (AO) is present along with all other environmental elements. Hence, this special issue focuses primarily on the materials issues experienced in LEO by space environmental exposure, such as on the exterior of the International Space Station and the Hubble Space Telescope, and the challenges and opportunities of ground-based laboratory sources to mimic LEO. The combination and comparison of both in-flight and groundbased experiments are needed for the development of predictive understanding of the materials degradation and AO passivation mechanisms in LEO. Such insights are essential for the development of advanced materials and coatings to ensure the longterm durability and performance of vehicles employed in space.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. U.S. Department of Energy, Basic Research Needs for Materials under Extreme Environments (BES Workshop on Basic Research Needs for Materials under Extreme Environments Report, 1113 June 2007); www.sc.doe.gov/bes/reports/abstracts.html#MUEE. Google Scholar
2. Madden, J.D., Science 318, 1094 (2007).Google Scholar
3. Bouaziz, O., Bréchet, Y., Embury, J.D., Adv. Eng. Mater. 1–2, 10 (2008).Google Scholar
4. U.S. Department of Energy, Directing Matter and Energy: Five Challenges for Science and the Imagination (BESAC Grand Challenges report, 25 January 2005); www.sc.doe.gov/bes/reports/abstracts.html#GC. Google Scholar
5. Bouaziz, O., Embury, J.D., Mater. Sci. Forum 42, 539 (2007).Google Scholar
6. Kumar, K.S., Van Swygenhoven, H., Suresh, S., Acta Mater. 51, 5743 (2003).Google Scholar
7. Weertman, J.R., MRS Bull. 29, 616 (2004).CrossRefGoogle Scholar
8. Van Swygenhoven, H., Weertman, J.R., Mater. Today 9, 24 (2006).CrossRefGoogle Scholar
9. Meyers, M.A., Mishra, A., Benson, D.J., Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
10. Kocks, U.F., Mecking, H., Prog. Mater. Sci. 48, 171 (2003).Google Scholar
11. Wert, J.A., Huang, X., Winther, G., Pantleon, W., Poulsen, H.F., Mater. Today 10–9, 24 (2007).Google Scholar
12. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T., JOM 58, 33 (2006).Google Scholar
13. Verhoeven, J.D., Metallography 20, 145 (1987).Google Scholar
14. Kochmann, W., Reibold, M., Goldberg, R., Hauffe, W., Levin, A.A., Meyer, D.C., Stephan, T., Müller, H., Belger, A., Paufler, P., J. Alloys Comp. 372, L15 (2004).CrossRefGoogle Scholar
15. Arzt, E., Acta Mater. 46, 5611 (1998).Google Scholar
16. Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
17. Kumar, K.S., H. Van Swygenhoven, Suresh, S., Acta Mater. 51, 5743 (2003).Google Scholar
18. Thilly, L., Lecouturier, F., Von Stebut, J., Acta Mater. 50, 5049 (2002).CrossRefGoogle Scholar
19. Gil Sevillano, J., J. Phys. III 1, 967 (1991).Google Scholar
20. Embury, J.D., Hirth, J.P., Acta Mater. 42 (6), 2051 (1994).Google Scholar
21. Misra, A., Hirth, J.P., Hoagland, R.G., Acta Mater. 53, 4817 (2005).Google Scholar
22. Thilly, L., Ludwig, O., Véron, M., Lecouturier, F., Peyrade, J.P., Askénazy, S., Philos. Mag. A 82 (5), 925 (2002).CrossRefGoogle Scholar
23. Brenner, S.S., J. Appl. Phys. 27 (12), 1484 (1956).Google Scholar
24. Chokshi, A.H., Rosen, A., Karch, J., Gleiter, H., Scripta Mater. 23, 1679 (1989).Google Scholar
25. Saada, G., Mater. Sci. Eng. A 400–401, 146 (2005).Google Scholar
26. Saada, G., Philos. Mag. 85, 3003 (2005).CrossRefGoogle Scholar
27. Brandstetter, S., Van Swygenhoven, H., Van Petegem, S., Schmitt, B., Maaß, R., Derlet, P.M., Advanced Mater. 18, 1545 (2006).CrossRefGoogle Scholar
28. Saada, G., Verdier, M., Dirras, G.F., Philos. Mag. 87, 4875 (2007).Google Scholar
29. Li, H., Choo, H., Ren, Y., Saleh, T.A., Lienert, U., Liaw, P.K., Ebrahimi, F., Phys. Rev. Lett. 101, 015502 (2008).Google Scholar
30. Thilly, L., Van Petegem, S., Renault, P.O., Lecouturier, F., Vidal, V., Schmitt, B., Van Swygenhoven, H., Acta Mater. 57, 3157 (2009).Google Scholar
31. Rajagopalan, J., Rentenberger, C., Karnthale, H.P., Dehm, G., Saif, M.T.A., Acta Mater. 58, 4772 (2010).CrossRefGoogle Scholar
32. Aydiner, C.C., Brown, D.W., Mara, N.A., Almer, J., Misra, A., Appl. Phys. Lett. 94, 031906 (2009).CrossRefGoogle Scholar
33. Askénazy, S., Phys. B 211, 56 (1995).CrossRefGoogle Scholar
34. Spencer, K., Lecouturier, F., Thilly, L., Embury, J.D., Adv. Eng. Mater. 6, 290 (2004).Google Scholar
35. Thilly, L., Lecouturier, F., Nanomaterials and Nanochemistry: High Field Coils, (Springer, New York, 2007), p. 685.Google Scholar
36. Freudenberger, J., Lyubimova, J., Gaganov, A., Witte, H., Hickman, A.L., Jones, H., Nganb, M., Mater. Sci. Eng. A 527, 2004 (2010).CrossRefGoogle Scholar
37. Thilly, L., Vidal, V., Van Petegem, S., Stuhr, U., Lecouturier, F., Renault, P.O., Van Swygenhoven, H., Appl. Phys. Lett. 88, 191906 (2006).CrossRefGoogle Scholar
38. Nix, W.D., Math. Mech. Solids 14, 207 (2009).CrossRefGoogle Scholar
39. Han, S.M., Phillips, M.A., Nix, W.D., Acta Mater. 57, 4473 (2009).Google Scholar
40. Wang, J., Hoagland, R.G., Misra, A., Scripta Mater. 60, 1067 (2009).Google Scholar
41. Mastorakos, I.N., Zbib, H.M., Bahr, D.F., Appl. Phys. Lett. 94, 173114 (2009).Google Scholar
42. Anderson, P.M., Carpenter, J.S., Scripta Mater. 62, 325 (2010).CrossRefGoogle Scholar
43. Li, Y.P., Zhang, G.P., Acta Mater. 58, 3877 (2010).Google Scholar
44. Lewis, A.C., Eberl, C., Hemker, K.J., Weihs, T.P., J. Mater. Res. 23, 376 (2008).Google Scholar
45. Clemens, B.M., Kung, H., Barnett, S.A., MRS Bull. 24, 20 (1999).CrossRefGoogle Scholar
46. Cammarata, R.C., Scripta Mater. 50, 751 (2004).CrossRefGoogle Scholar
47. Lu, L., Chen, X., Huang, X., Lu, K., Science 323, 607 (2009).Google Scholar
48. Zhu, T., Li, J., Samanta, A., Kim, H.G., Suresh, S., Proc. Nat. Acad. Sci. U.S.A. 104, 3031 (2007).Google Scholar
49. Anderoglu, O., Misra, A., Wang, J., Hoagland, R.G., Hirth, J.P., Zhang, X., Int. J. Plast. 26, 875 (2010).Google Scholar
50. Sansoz, F., Huang, H., Warner, D.H., JOM 60, 79 (2008).CrossRefGoogle Scholar
51. Shute, C.J., Myers, B.D., Xie, S., Barbee, T.W. Jr, Hodge, A.M., Weertman, J.R., Scripta Mater. 60, 1073 (2009).CrossRefGoogle Scholar
52. Misra, A., Hoagland, R.G., Kung, H., Philos. Mag. 84, 1021 (2004).CrossRefGoogle Scholar
53. Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., Misra, A., Appl. Phys. Lett., 92, 231901 (2008).CrossRefGoogle Scholar
54. Porter, D.L., Garner, F.A., J. Nucl. Mater. 159, 114 (1988).Google Scholar
55. Kurtz, R.J., Gao, F., Heinisch, H.L., Wirth, B.D., Odette, G.R., Yamamoto, T., JOM 56, 263 (2004).Google Scholar
56. Misra, A., Demkowicz, M.J., Zhang, X., Hoagland, R.G., JOM 59, 62 (2007).Google Scholar
57. Zhang, X., Li, N., Anderoglu, O., Wang, H., Swadener, J.G., Hochbauer, T., Misra, A., Hoagland, R.G., Nucl. Instrum. Methods Phys. Res., Sect. B 261 (1–2), 1129 (2007).Google Scholar
58. Hochbauer, T., Misra, A., Hattar, K., Hoagland, R.G., J. Appl. Phys. 98, 123516 (2005).Google Scholar
59. Hattar, K., Demkowicz, M.J., Misra, A., Robertson, I.M., Hoagland, R.G., Scripta Mater. 58, 541 (2008).CrossRefGoogle Scholar
60. Singh, B.N., Philos. Mag. 28, 1409 (1973).CrossRefGoogle Scholar
61. Nita, N., Schaeublin, R., Victoria, M., Valiev, R.Z., Philos. Mag. 85, 723 (2005).Google Scholar
62. Rose, M., Balogh, A.G., Hahn, H., Nucl. Instrum. Methods Phys. Res., Sect. B 127/128, 119 (1997).Google Scholar
63. Samaras, M., Derlet, P.M., van Swygenhoven, H., Victoria, M., Phys. Rev. Lett. 88, 125505 (2002).Google Scholar
64. Hienisch, H.L., Gao, F., Kurtz, R.J., J. Nucl. Mater. 329–333, 924 (2004).Google Scholar
65. Bai, X.M., Voter, A.F., Hoagland, R.G., Nastasi, M., Uberuaga, B.P., Science 327, 1631 (2010).Google Scholar
66. Misra, A., Hirth, J.P., Hoagland, R.G., Embury, J.D., Kung, H., Acta Mater. 52, 2387 (2004).Google Scholar
67. Cao, F., Beyerlein, I.J., Addessio, F.L., Sencer, B.H., Trujillo, C.P., Cerreta, E.K., Gray, G.T. III, Acta Mater. 58, 549 (2010).Google Scholar
68. Odette, G.R., Hoelzer, D.T., JOM, September, 84 (2010).Google Scholar
69. Odette, G.R., Alinger, M.J., Wirth, B.D., Annual Review of Materials Research, 38, 471 (2008).CrossRefGoogle Scholar
70. Was, G.S., Zinkle, S.J., Guérin, Y., MRS Bull. 34 (1), 10 (2009).Google Scholar
71. Huang, H., Van Swygenhoven, H., MRS Bull. 34 (3), 160 (2009).CrossRefGoogle Scholar
72. Robertson, I.M., Ferreira, P.J., Dehm, G., Hull, R., Stach, E.A., MRS Bull. 33 (2), 122 (2008).Google Scholar
73. Legros, M., Gianola, D.S., Motz, C., MRS Bull. 35 (5), 354 (2010).Google Scholar
74. Kalantar, D.H., Collins, G.W., Colvin, J.D., Eggert, J.H., Hawreliak, J., Lorenzana, H.E., Meyers, M.A., Minich, R.W., Rosolankova, K., Schneider, M.S., St, J.S.ölken, Wark, J.S., Int. J. Impact Eng. 33, 343 (2006).Google Scholar
76. Evans, P.G., Billinge, S.J.L., MRS Bull. 35 (6), 495 (2010).CrossRefGoogle Scholar