Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T11:24:54.493Z Has data issue: false hasContentIssue false

Metasurface optics for imaging applications

Published online by Cambridge University Press:  11 March 2020

Gun-Yeal Lee
Affiliation:
Seoul National University, Republic of Korea; dlrjsduf12@snu.ac.kr
Jangwoon Sung
Affiliation:
Seoul National University, Republic of Korea; jwsung94@gmail.com
Byoungho Lee
Affiliation:
Seoul National University, Republic of Korea; byoungho@snu.ac.kr
Get access

Abstract

The development of optical elements has seen tremendous advances over the last few decades for a variety of applications, including displays, cameras, and microscopes. Various optical elements have been developed, ranging from refractive elements to diffractive elements. In recent years, metasurfaces have been in the spotlight to develop next-generation optical elements beyond existing refractive or diffractive optics. A metasurface is a two-dimensional metamaterial composed of subwavelength artificial structures and has been studied for the development of optical elements with the major advantage that the properties of light can be freely adjusted by a thin flat structure. Optical lenses using metasurfaces can be hundreds of times thinner than conventional lenses, while at the same time, provide excellent focusing performance. This suggests that they can be applied to mobile and high-performance imaging applications in the future. Here, we discuss developments of optical elements from refractive or diffractive optics to metasurface optics, including basic principles and properties, current issues, and future perspectives.

Type
Metasurfaces for Flat Optics
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Born, M., Wolf, E., Principle of Optics, 7th ed. (Cambridge University, Cambridge, UK, 1999).CrossRefGoogle Scholar
Yu, N., Capasso, F., Nat. Mater. 13, 139 (2014).10.1038/nmat3839CrossRefGoogle Scholar
Meinzer, N., Barnes, W.L., Hooper, I.R., Nat. Photonics 8, 889 (2014).CrossRefGoogle Scholar
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B., Science 354, aag2472 (2016).10.1126/science.aag2472CrossRefGoogle Scholar
Jahani, S., Jacob, Z., Nat. Nanotechnol. 11, 23 (2016).10.1038/nnano.2015.304CrossRefGoogle Scholar
Kruk, S., Kivshar, Y., ACS Photonics 4, 2638 (2017).CrossRefGoogle Scholar
Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M., Devlin, R., Optica 4, 139 (2017).10.1364/OPTICA.4.000139CrossRefGoogle Scholar
Kamali, S.M., Arbabi, E., Arbabi, A., Faraon, A., Nanophotonics 7, 1041 (2018).CrossRefGoogle Scholar
Lee, G.-Y., Yoon, G., Lee, S.Y., Yun, H., Cho, J., Lee, K., Kim, H., Rho, J., Lee, B., Nanoscale 10, 4237 (2018).CrossRefGoogle ScholarPubMed
Arbabi, A., Horie, Y., Bagheri, M., Faraon, A., Nat. Nanotechnol. 10, 937 (2015).CrossRefGoogle Scholar
Balthasar Mueller, J.P., Rubin, N.A., Devlin, R.C., Groever, B., Capasso, F., Phys. Rev. Lett. 118, 113901 (2017).CrossRefGoogle Scholar
Song, E.-Y., Lee, G.-Y., Park, H., Lee, K., Kim, J., Hong, J., Kim, H., Lee, B., Adv. Opt. Mater. 5, 1601028 (2017).CrossRefGoogle Scholar
Sung, J., Lee, G.-Y., Lee, B., Nanophotonics 8, 1701 (2019).CrossRefGoogle Scholar
Sung, J., Lee, G.-Y., Choi, C., Hong, J., Lee, B., Adv. Opt. Mater. 7, 1801748 (2019).10.1002/adom.201801748CrossRefGoogle Scholar
Kim, I., Yoon, G., Jang, J., Genevet, P., Nam, K.T., Rho, J., ACS Photonics 5, 3876 (2018).CrossRefGoogle Scholar
Lee, G.-Y., Sung, J., Lee, B., ETRI J . 41, 10 (2019).10.4218/etrij.2018-0532CrossRefGoogle Scholar
Ni, X., Kildishev, A.V., Shalaev, V.M., Nat. Commun. 4, 2807 (2013).CrossRefGoogle Scholar
Mun, S.-E., Yun, H., Choi, C., Kim, S.-J., Lee, B., Adv. Opt. Mater. 6, 1800545 (2018).CrossRefGoogle Scholar
Miyamoto, K., J. Opt. Soc. Am. A Opt. Image Sci. Vis. 51, 17 (1961).Google Scholar
Fujita, T., Nishihara, H., Koyama, J., Opt. Lett. 7, 578 (1982).10.1364/OL.7.000578CrossRefGoogle Scholar
O’Shea, D.C., Suleski, T.J., Kathman, A.D., Prather, D.W., Diffractive Optics: Design, Fabrication, and Test, Vol. 62 (Spie Press, Bellingham, WA, 2004).Google Scholar
Fleming, M.B., Hutley, M.C., Appl. Opt. 36, 4635 (1997).10.1364/AO.36.004635CrossRefGoogle Scholar
Sweeney, D.W., Sommargren, G.E., Appl. Opt. 34, 2469 (1995).CrossRefGoogle Scholar
Kim, G., Domínguez-Caballero, J.A., Menon, R., Opt. Express 20, 2814 (2012).CrossRefGoogle Scholar
Shannon, C.E., Proc. IRE 37, 10 (1949).10.1109/JRPROC.1949.232969CrossRefGoogle Scholar
Lee, S.-Y., Kim, K., Kim, S.-J., Park, H., Kim, K.-Y., Lee, B., Optica 2, 6 (2015).CrossRefGoogle Scholar
Aieta, F., Genevet, P., Kats, M.A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F., Nano Lett . 12, 4932 (2012).10.1021/nl302516vCrossRefGoogle Scholar
Chen, C., Song, W., Chen, J.-W., Wang, J.-H., Chen, Y.H., Xu, B., Chen, M.-K., Li, H., Fang, B., Chen, J., Kuo, H.Y., Wang, S., Tsai, D.P., Zhu, S., Li, T., Light Sci. Appl. 8, 99 (2019).CrossRefGoogle Scholar
Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.-P., Capasso, F., Gaburro, Z., Science 334, 333 (2011).CrossRefGoogle Scholar
Ni, X., Ishii, S., Kildishev, A.V., Shalaev, V.M., Light Sci. Appl. 2, e72 (2013).CrossRefGoogle Scholar
Berry, M.V., J. Mod. Opt. 34, 1401 (1987).CrossRefGoogle Scholar
Chen, X., Huang, L., Mühlenbernd, H., Li, G., Bai, B., Tan, Q., Jin, G., Qiu, C.-W., Zhang, S., Zentgraf, T., Nat. Commun. 3, 1198 (2012).CrossRefGoogle Scholar
Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., Zhang, S., Nat. Nanotechnol. 10, 308 (2015).CrossRefGoogle Scholar
Huang, Y.-W., Chen, W.T., Tsai, W.-Y., Wu, P.C., Wang, C.-M., Sun, G., Tsai, D.P., Nano Lett . 15, 3122 (2015).CrossRefGoogle Scholar
Tseng, M.L., Hsiao, H.-H., Chu, C.H., Chen, M.K., Sun, G., Liu, A.-Q., Tsai, D.P., Adv. Opt. Mater. 6, 1800554 (2018).CrossRefGoogle Scholar
Khorasaninejad, M., Capasso, F., Science 358, eaam8100 (2017).CrossRefGoogle Scholar
Arbabi, A., Horie, Y., Ball, A.J., Bagheri, M., Faraon, A., Nat. Commun. 6, 7069 (2015).CrossRefGoogle Scholar
Lin, D., Fan, P., Hasman, E., Brongersma, M.L., Science 345, 298 (2014).CrossRefGoogle Scholar
Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F., Science 352, 1190 (2016).CrossRefGoogle Scholar
Zhan, A., Colburn, S., Dodson, C.M., Majumdar, A., Sci. Rep. 7, 1673 (2017).CrossRefGoogle Scholar
Chen, B.H., Wu, P.C., Su, V.-C., Lai, Y.-C., Chu, C.H., Lee, I.C., Chen, J.-W., Chen, Y.H., Lan, Y.-C., Kuan, C.-H., Tsai, D.P., Nano Lett . 17, 6345 (2017).CrossRefGoogle Scholar
Arbabi, A., Arbabi, E., Kamali, S.M., Horie, Y., Han, S., Faraon, A., Nat. Commun. 7, 13682 (2016).Google Scholar
Groever, B., Chen, W.T., Capasso, F., Nano Lett . 17, 4902 (2017).CrossRefGoogle Scholar
Khorasaninejad, M., Aieta, F., Kanhaiya, P., Kats, M.A., Genevet, P., Rousso, D., Capasso, F., Nano Lett. 15, 5358 (2015).Google Scholar
Avayu, O., Almeida, E., Prior, Y., Ellenbogen, T., Nat. Commun. 8, 14992 (2017).CrossRefGoogle Scholar
Arbabi, E., Arbabi, A., Kamali, S.M., Horie, Y., Faraon, A., Optica 3, 628 (2016).CrossRefGoogle Scholar
Chen, W.T., Zhu, A.Y., Sanjeev, V., Khorasaninejad, M., Shi, Z., Lee, E., Capasso, F., Nat. Nanotechnol. 13, 220 (2018).CrossRefGoogle Scholar
Wang, S., Wu, P.C., Su, V.C., Lai, Y.C., Chen, M.K., Kuo, H.Y., Chen, B.H., Chen, Y.H., Huang, T.T., Wang, J.H., Lin, R.M., Kuan, C.H., Li, T., Wang, Z., Zhu, S., Tsai, D.P., Nat. Nanotechnol. 13, 227 (2018).CrossRefGoogle Scholar
Pahlevaninezhad, H., Khorasaninejad, M., Huang, Y.-W., Shi, Z., Hariri, L.P., Adams, D.C., Ding, V., Zhu, A., Qiu, C.-W., Capasso, F., Suter, M.J., Nat. Photonics 12, 540 (2018).CrossRefGoogle Scholar
Lin, R.J., Su, V.C., Wang, S., Chen, M.K., Chung, T.L., Chen, Y.H., Kuo, H.Y., Chen, J.W., Chen, J., Huang, Y.T., Wang, J.H., Chu, C.H., Wu, P.C., Li, T., Wang, Z., Zhu, S., Tsai, D.P., Nat. Nanotechnol. 14, 227 (2019).CrossRefGoogle Scholar
Lee, G.-Y., Hong, J.-Y., Hwang, S., Moon, S., Kang, H., Jeon, S., Kim, H., Jeong, J.-H., Lee, B., Nat. Commun. 9, 4562 (2018).CrossRefGoogle Scholar
Faraji-Dana, M., Arbabi, E., Arbabi, A., Kamali, S.M., Kwon, H., Faraon, A., Nat. Commun. 9, 4196 (2018).Google Scholar
Hwang, S.H., Cho, J., Jeon, S., Kang, H.-J., Zhao, Z.-J., Park, S., Lee, Y., Lee, J., Kim, M., Hahn, J., Lee, B., Jeong, J.H., Kim, H., Youn, J.R., Sci. Rep. 9, 3051 (2019).CrossRefGoogle Scholar
Park, J.-S., Zhang, S., She, A., Chen, W.T., Lin, P., Yousef, K.M.A., Cheng, J.-X., Capasso, F., (2019) Nano Lett ., doi:10.1021/acs.nanolett.9b03333.Google Scholar