Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T14:26:36.106Z Has data issue: false hasContentIssue false

Plasma Generation for Materials Processing

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Chemically reactive plasma discharges are widely used to process materials. A plasma is a primarily electrically neutral collection of free charged particles moving in random directions. The simplest plasma consists of electrons and one kind of positive ions. This article deals primarily with plasma discharges, which are plasmas having the following features:

(1) They are driven electrically.

(2) Charged-particle collisions with neutral-gas molecules are important.

(3) There are boundaries at which surface losses are important.

(4) Ionization of neutrals sustains the plasma in the steady state.

One simple discharge consists of a voltage source that drives current through a low-pressure gas between two conducting plates or electrodes. The gas “breaks down” to form a plasma, usually weakly ionized—that is, the plasma density is only a small fraction of the neutral-gas density.

The plasmas used in materials processing present an enormous range of charged-particle densities n and of temperatures Te, Ti, and T for electrons, ions, and processing gas, respectively. High-pressure (atmospheric) discharges are in near-thermal equilibrium (Te ~ Ti ~ T ~ 0.1–2 eV). Plasma temperatures are usually given in equivalent electron-volt units: One eV is equivalent to 11600 K through the Boltzmann constant. As discussed in the article by Boulos and Pfender in this issue of MRS Bulletin, these thermal discharges have high densities n ~ 1014-1019 particles/cm3 and are mainly used as heat sources. Low-pressure (1 mTorr–10 Torr) discharges are not in thermal equilibrium (Te ~ 2–5 eV ≫ Ti ~ T) and have low densities n ~ 109–1012 particles/cm3. As discussed in several of the following articles, these discharges are used as miniature chemical factories in which feedstock gases are broken into positive ions and chemically reactive etchants, deposition precursors, etc., which then flow to and physically or chemically react at the surface of a substrate.

Type
Plasma Processing of Advanced Materials
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, Inc., New York, 1994).Google Scholar
2.Lee, C. and Lieberman, M.A., J. Vac. Sci. Technol. A 13 (1995) p. 368.CrossRefGoogle Scholar
3.Asmussen, J., J. Vac. Sci. Technol. A 7 (1989) p. 883.CrossRefGoogle Scholar
4.Boswell, R.W., Plasma Phys. Controlled Fusion 26 (1970) p. 1147.CrossRefGoogle Scholar
5.Chen, F.F., Plasma Phys. Controlled Fusion 33 (1991) p. 339.CrossRefGoogle Scholar
6.Cook, J.M., Ibbotson, D.E., Foo, P.D., and Flamm, D.L., J. Vac. Sci. Technol. A 8 (1990) p. 1820.CrossRefGoogle Scholar
7.Moisan, M. and Zakrzewski, Z., J. Phys. D 24 (1991) p. 1025.Google Scholar
8.Trivelpiece, A.W. and Gould, R.W., J. Appl. Phys. 30 (1959) p. 1784.CrossRefGoogle Scholar
9.Komachi, K., J. Vac. Sci. Technol A 1 (1992) p. 164.Google Scholar
10.Hittorf, W., Wiedemanns Ann. Phys. 21 (1884) p. 90.CrossRefGoogle Scholar
11.Eckert, H.U., High Temp. Sci. 6 (1974) p. 99.Google Scholar
12.Sugai, H., Nakamura, K., Hikosaka, Y., and Nakamura, M., J. Vac. Sci. Technol. A 13 (1995) p. 887.CrossRefGoogle Scholar
13.Tuszewski, M. and Tobin, J.A., J. Vac. Sci. Technol. A in press.Google Scholar
14.Ogle, J.S., U.S. Patent No. 4,948,458 (August 14, 1990).Google Scholar
15.Hopwood, J., Guarnieri, C.R., Whitehair, S.J., and Cuomo, J.J., J. Vac. Sci. Technol. A 11 (1993) p. 147 and p. 152.CrossRefGoogle Scholar
16.von Engel, A., Seeliger, A.R., and Steenbeck, M., Z. Phys. 85 (1933) p. 144.CrossRefGoogle Scholar
17.Yokoyama, T., Kogoma, M., Morikawa, T., and Okazaki, S., J. Phys. D 23 (1990) p. 1125.Google Scholar
18.Siemens, W., Ann. Phys. Chem. 102 (1857) p. 66.CrossRefGoogle Scholar
19.Evans, D., Rosocha, L.A., Anderson, G.K., Coogan, J.J., and Kushner, M.J., J. Appl. Phys. 74 (1993) p. 5378.CrossRefGoogle Scholar
20.Brown, I.G., Rev. Sci. Instrum. 65 (1994) p. 3061.CrossRefGoogle Scholar
21.Hoyt, R.P., Scheuer, J.T., Schoenberg, K.F., Gerwin, R.A., Moses, R.W. Jr., and Henins, I., IEEE Trans. Plasma Sci. 23 (1995) p. 481.CrossRefGoogle Scholar
22.Dalvie, M., Surendra, M., Selwyn, G.S., and Guarnieri, C.R., Plasma Sources Sci. Technol. 3 (1994) p. 442.CrossRefGoogle Scholar
23.Selwyn, G.S., Semicond. Int. 3 (1993) p. 72.Google Scholar
24.Selwyn, G.S., Heidenreich, J.E., and Haller, K.L., J. Vac. Sci. Technol. A 9 (1991) p. 2817.CrossRefGoogle Scholar
25. To view several photographs of trapped particle clouds, access the world-wide-web at the following address: http://harry.lanl.gov/bpw/contamination.html.Google Scholar
26.Carlile, R.N., Geha, S.G., O'Hanlon, J.F., and Stewart, J.C., Appl Phys. Lett. 67 (1991) p. 1167.CrossRefGoogle Scholar
27.Selwyn, G.S. and Patterson, E.F., J. Vac. Sci. Technol. A 10 (1992) p. 1053.CrossRefGoogle Scholar
28.Selwyn, G.S., Haller, K.L., and Patterson, E.F., J. Vac. Sci. Technol. A 11 (1993) p. 1132.CrossRefGoogle Scholar
29.Selwyn, G.S. and Bailey, A.D. III, J. Vac. Sci. Technol. A 14 (1996) p. 649.CrossRefGoogle Scholar
30.Selwyn, G.S., Jpn. J. Appl Phys. 32 (1993) p. 3068.CrossRefGoogle Scholar
31.Selwyn, G.S., patent pending (1996).Google Scholar