Hostname: page-component-68945f75b7-z7ghp Total loading time: 0 Render date: 2024-08-05T15:56:22.414Z Has data issue: false hasContentIssue false

Properties and Defects of Type II Superconductors

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Three major superconducting parameters can characterize a type II superconductor: critical transition temperature, Tc, upper critical magnetic field, Hc2, and critical current density, Jc. Because of the variety of crystal structures, chemical stoichiometrics, and microstructures of the materials, these superconducting parameters differ greatly from system to system.

It has been found that the critical transition temperature is closely related to the crystal structure and stoichiometry. Previous studies have shown that compounds with a high degree of symmetry tend to be more favorable to superconductivity. Compounds with a cubic structure, such as a bcc structure, usually have higher Tc values than compounds with a hexagonal lattice. Among conventional superconductors, the so-called A-15 structure is most favorable for high transition temperatures. It is well known that many high Tc superconductors such as YBa2Cu3Ox and Bi2Sr2CaCu2Ox have an orthorhombic structure with a high degree of symmetry.

The upper critical field, Hc2, is more complicated in terms of its relationship to structural characteristics. Experimental results have indicated that Hc2 is more closely related to the chemical stoichiometry and crystal structure than to the microstructure.

However, the critical current density, Jc, can vary tremendously in a compound with a given crystal structure. The change in critical current density is associated with the so-called flux pinning that arises from the interaction between the flux lines and crystal defects. Thus, Jc is determined mostly by the microstructure of the materials.

Type
Point Defects Part II
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lave, M., Ann. Phys. 6 (1948) p. 40.Google Scholar
2.Daunt, J., Progr. Low-Temp. Phys. 2 (1957) p. 194.Google Scholar
3.Dew-Hughes, D., Cryogenics 15 (1978) p. 435.CrossRefGoogle Scholar
4.Muller, J., Rep. Prog. Phys. 43 (1980) p. 641.CrossRefGoogle Scholar
5.Hanak, J.J., Cody, G.D., Aron, J.L., and Hitchcock, H.C., High Magnetic Fields, edited by Lax, et al. (Wiley, New York, 1961) p. 592.Google Scholar
6.Waterstrat, R.M., Haenssler, F., and Muller, J., J. Appl. Phys. 50 (1979) p. 4763.CrossRefGoogle Scholar
7.Olinger, B. and Newkirk, L.R., Solid State Commun. 37 (1981) p. 613.CrossRefGoogle Scholar
8.Sweedler, A.R., Moehlecke, S., Jones, R.H., Viswanathan, R., and Johnston, D.C., Solid State Commun. 21 (1977) p. 1007.CrossRefGoogle Scholar
9.Matthias, B.T., Geballe, T.H., and Compton, V., Rev. Mod. Phys. 35 (1963) p. 1.CrossRefGoogle Scholar
10.Gavaler, J.R., Appl. Phys. Lett. 23 (1973) p. 480.CrossRefGoogle Scholar
11.Bardeen, J., Cooper, L.N., and Schreiffer, J.R., Phys. Rev. 108 (1957) p. 1175.CrossRefGoogle Scholar
12.Eliashberg, G.M., Zh. Eksp. Teor. Fiz. 38 (1960) p. 966.Google Scholar
13.Wood, E.A., Compton, B.V., Matthias, B.T., and Corenzwit, E., Acta Crystallogr. 11 (1958) p. 604.CrossRefGoogle Scholar
14.Weger, M., Rev. Mod. Phys. 36 (1964) p. 175.CrossRefGoogle Scholar
15.Labbe, J. and Friedel, J., J. de Physique 27 (1966) p. 153.CrossRefGoogle Scholar
16.Cava, R.J., Batlogg, B., Van Dover, R.B., Murphy, D.W., Sunshine, S., Siegrist, T., Remeika, J.P., Rietman, E.A., Zahurak, S., and Espinosa, G.P., Phys. Rev. Lett. 58 (1987) p. 1676.CrossRefGoogle Scholar
17.Shi, D., Phys. Rev. B 39 (1989) p. 4299.CrossRefGoogle Scholar
18.Jorgensen, J.D., Beno, M.A., Hinks, D.G., Beno, M.A., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I., Segre, C.U., Zhang, K., and Kleefish, M.S., Phys. Rev. B 36 (1987) p. 3608.CrossRefGoogle Scholar
19.Jorgensen, J.D., Veal, B.W., Paulikas, A.P., Nowicki, L.J., Crabtree, G.W., Claus, H., and Kwok, W.K., Phys. Rev. B 41 (1990) p. 1863.CrossRefGoogle Scholar
20.Veal, B.W., Paulikas, A.P., You, H., Shi, H., Fang, Y., and Downey, J.W., Phys. Rev. B 42 (1990) p. 6305.CrossRefGoogle Scholar
21.Tokura, Y., Torrance, J.B., Huang, T.C., and Nazzal, A.I., Phys. Rev. B 38 (1988) p. 7156.CrossRefGoogle Scholar
22.Cava, R.J., Batlogg, B., Rabe, K.M., Rietman, E.A., Gallagher, P.K., and Rupp, L.W. Jr., Physica C 156 (1988) p. 523.CrossRefGoogle Scholar
23.Jorgensen, J.D., Hinks, D.G., Shaded, H., Dabrowski, B., Veal, B.W., Paulikas, A.P., Nowichi, L.J., Crabtree, G.W., Kwok, W.K., Umezawa, A., Nunez, L.H., Dunlap, B.D., Segre, C.U., and Kimball, C.W., Physica B 156–157 (1989) p. 877.CrossRefGoogle Scholar
24.Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R.C., Rupp, L.W. Jr., White, A.E., Short, K.T., Peck, W.F. Jr., and Kometani, T.Y., Nature 332 (1988) p. 814.CrossRefGoogle Scholar
25.Hinks, D.G., Dabrowski, B., Jorgensen, J.D., Mitchell, A.W., Richards, D.R., Pei, Shiyou, and Shi, Donglu, Nature 333 (1988) p. 836.CrossRefGoogle Scholar
26.Hinks, D.G., Richards, D.R., Dabrowski, B., Mitchell, A.W., Jorgensen, J.D., and Marx, D.T., Physica C 156 (1988) p. 477.CrossRefGoogle Scholar
27.Batlogg, B., Physica B 126 (1984) p. 275.Google Scholar
28.Jorgensen, J.D., Dabrowski, B., Pei, S., Hinks, D.G., Soderholm, L., Morosin, B., Venturini, J.E., and Ginley, D.S., Phys. Rev. B 38 (1988) p. 11337.CrossRefGoogle Scholar
29.Zhou, J., Sinha, S., and Goodenough, J.B., Phys. Rev. B 39 (1989) p. 12331.CrossRefGoogle Scholar
30.Chaillout, C., Cheong, S.W., Fisk, Z., Lehmann, M.S., Marezio, M., Morosin, B., and Schirder, J.E., Physica C 158 (1989) p. 183.CrossRefGoogle Scholar
31.Werthamer, N.R., Helfand, E., and Hohenberg, P.C., Phys. Rev. 147 (1966) p. 295.CrossRefGoogle Scholar
32.Maki, K., Phys. 1 (1964) p. 127.CrossRefGoogle Scholar
33.Kim, Y.B., Hempstead, C.F., and Strnad, A.R., Phys. Rev. 139 (1965) p. 1163.CrossRefGoogle Scholar
34.Witcomb, M.J., PhD thesis, University of Lancaster (1970).Google Scholar
35.Orlando, T.P., McNiff, E.J., Foner, S., and Beasley, M.R., Phys. Rev. B 19 (1979) p. 4545.CrossRefGoogle Scholar
36.Welp, U., Kwok, W.K., Crabtree, G.W., Vandervoort, K.G., and Liu, J.Z., Phys. Rev. Lett. 62 (1989) p. 1908.CrossRefGoogle Scholar
37.Abrikosov, A.A., Sov. Phys. JETP 5 (1957) p. 1174.Google Scholar
38.Cribier, D., Jacrot, B., Farnoux, B., and Mahdav, L. Rao, J. Appl. Phys. 37 (1966) p. 952.CrossRefGoogle Scholar
39.Sarma, N.V., Phys. Lett. 23 (1967) p. 619.Google Scholar
40.Campbell, A.M. and Evetts, J.E., Adv. Phys. 21 (1972) p. 199.CrossRefGoogle Scholar
41.Irie, F. and Yamafuji, K., J. Phys. Soc. 23 (1967) p. 255.CrossRefGoogle Scholar
42.Kramer, E.J., J. Appl. Phys. 44 (1973) p. 1360.CrossRefGoogle Scholar
43.Ullmaier, H., Springer Tracts on Modem Phys. 76 (1975) p. 1.CrossRefGoogle Scholar
44.Yetter, W.E., Thomas, D.A., and Kramer, E.J., Philos. Mag. 46 (1982) p. 523.CrossRefGoogle Scholar
45.Dew-Hughes, D., Philos. Mag. 30 (1974) p. 293.CrossRefGoogle Scholar
46.Fietz, W.A. and Webb, W.W., Phys. Rev. 178 (1969) p. 657.CrossRefGoogle Scholar
47.Luhman, T., Pande, C.S., and Dew-Hughes, D., J. Appl. Phys. 47 (1976) p. 1459.CrossRefGoogle Scholar
48.Hake, R.R., Phys. Rev. 158 (1967) p. 356.CrossRefGoogle Scholar
49.Neuringer, L.J. and Shapira, Y., Phys. Rev. Lett. 17 (1966) p. 81.CrossRefGoogle Scholar
50.Nelson, D.R. and Seung, H.S., Phys. Rev. 39 (1989) p. 9153.CrossRefGoogle Scholar
51.Brandt, E.H., preprint (1991).Google Scholar
52.Yeshurun, Y. and Malozemoff, A.P., Phys. Rev. Lett. 60 (1988) p. 2202.CrossRefGoogle Scholar
53.Ku, Y., Suenaga, M., Gao, Y., Crow, J.E., and Spencer, N. D., Phys. Rev. B 42 (1990) p. 8756; M. Suenaga, A.K. Ghosh, Youwen Ku, and D.O. Welch, Phys. Rev. Lett. 66 (1991) p. 1777.Google Scholar
54.Ekin, J.W., Phys. Rev. B 12 (1975) p. 2627.Google Scholar
55.Van Gurp, G.J., Philips Res. Rep. 22 (1967) p. 10.Google Scholar
56.Zerweck, G., J. Low Temp. Phys. 42 (1981) p. 1.CrossRefGoogle Scholar
57.Scanlan, R.M., Fietz, W.A., Koch, E.F., J. Appl. Phys. 46 (5) (1975) p. 2244.CrossRefGoogle Scholar
58.Hammond, R.H., Jacobsen, B.E., Geballe, T.H., Talvacchio, J., Salem, J.R., Pohl, A.C., and Graginski, A.I., IEEE Trans. Magn. MAG 15 (1979) p. 619.CrossRefGoogle Scholar
59.Livingston, J.D., Phys. Status Solidi 44 (1977) p. 295.CrossRefGoogle Scholar
60.Gallagher, W.J., Worthington, T.K., Dinger, T.R., Holtzberg, F., Kaiser, D.L., and Sandstrom, R.L., Physika 148B (1987) p. 228.Google Scholar
61.Crabtree, G.W., Kwok, W.K., and Umezawa, A., Quantum Field Theory as an Interdisciplinary Basis, edited by Khanna, F.C., Umezawa, H., Kunstatter, G., and Lee, H.C. (World Scientific, 1988).Google Scholar
62.Chudnovsky, E.M., Phys. Rev. Lett. 65 (1990) p. 3060.CrossRefGoogle Scholar
63.Weber, H.W. and Crabtree, G.W., Studies of High Temperature Superconductors, edited by Narlikar, A.V. (Nova Science, New York, 1991), in press.Google Scholar
64.Kirk, M.A., in Defects in Materials, edited by Bristowe, P.D., Epperson, J.E., Griffith, J.E., and Liliental-Weber, Z., (Mater. Res. Soc. Symp. Proc. 209, Pittsburgh, PA, 1991) p. 743.Google Scholar
65.Kwok, W.K., Welp, U., Crabtree, G.W., Vandervoort, K.G., Hulscher, R., and Liu, J.Z., Phys. Rev. Lett. 64 (1990) p. 966.CrossRefGoogle Scholar
66.Autler, S. H., Rosenblum, E.S., and Gooen, K., Phys. Rev. Lett. 9 (1962) p. 489.CrossRefGoogle Scholar
67.Larkin, A.I. and Ovchinnikov, Y.N., J. Low Temp. Phys. 34 (1979) p. 409.CrossRefGoogle Scholar
68.Shi, D., Xu, M., Boley, M.S., and Welp, U., Physica C 160 (1989) p. 417.CrossRefGoogle Scholar
69.Larbalestier, D.C. and Daeumling, M., preprint (1990).Google Scholar
70.Ling, X. S. and Budnick, J.I., unpublished data (1991).Google Scholar
71.Feigel'man, M.V., Geshkenbein, V.B., Larkin, A.I., and Vinokur, V.M., Phys. Rev. Lett. 63 (1989) p. 2303.CrossRefGoogle Scholar
72.Shi, D., Tang, M., Vandervoort, K., and Claus, H., Phys. Rev. B 39 (1989) p. 9091.CrossRefGoogle Scholar
73.Shi, D., Tang, M., Boley, M.S., Hash, M., Vandervoort, K., Claus, H., and Lwin, Y.N., Phys. Rev. B 40 (1989) p. 2247.CrossRefGoogle Scholar
74.Shi, D., Boley, M.S., Welp, U., Chen, J.G., and Liao, Y.X., Phys. Rev. B 40 (1989) p. 5255.CrossRefGoogle Scholar
75.Shi, D., Chen, J.G., Welp, U., Boley, M.S., and Zangvil, A., Appl. Phys. Lett. 55 (1989) p. 1354.CrossRefGoogle Scholar
76.Salem-Suqui, S. Jr., Shi, D., and McFarland, S.E., preprint (1991).Google Scholar
77.Murakami, M., Gotoh, S., Fujimoto, H., Yamaguchi, K., Koshizuka, N., and Tanaka, S., Supercon. Sci. Technol. 4 (1991) p. 543.CrossRefGoogle Scholar
78.Jin, S., Tiefel, T. H., and Kammlott, G.W., Appl. Phys. Lett. 59 (1991) p. 540.CrossRefGoogle Scholar
79.Peterson, R.L. and Ekin, J.W., Physica C 157 (1989) p. 325.CrossRefGoogle Scholar
80.Stephens, R.B., Cryogenics 29 (1989) p. 399.CrossRefGoogle Scholar
81.Barone, A. and Patemo, G., in Physics and Applications of the Josephson Effect (John Wiley & Sons, New York, 1982) p. 74.CrossRefGoogle Scholar
82.Shi, D., Chen, J.G., Xu, M., Cornelius, A.L., Balachandran, U., and Goretta, K.C., Supercond. Sci. Technol. 3 (1990) p. 222.CrossRefGoogle Scholar