Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-22T16:49:22.276Z Has data issue: false hasContentIssue false

Quantitative Auger and XPS Analysis of Thin Films

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In 1925, P. Auger first observed the so-called Auger electrons in a Wilson cloud chamber. He explained this occurrence as being due to a radiationless transition in atoms excited by a primary x-ray photon source. In 1953, Lander first pointed out that Auger electrons arising from solid samples can be detected in the energy distribution curve of secondary electrons from surfaces subjected to electron bombardment. Moreover, low-energy Auger electrons (∼1 keV kinetic energy) can escape from only the first several atomic layers of a surface since they are strongly absorbed by even a monolayer of atoms. Thus Auger electron spectroscopy (AES) possesses high surface sensitivity. This is one characteristic that makes AES very useful for the study of thin films. For such applications, an important development in AES occurred when Harris showed that the sensitivity of the detection of Auger electrons can be improved by differentiating the electron energy distribution curve with respect to the energy. Furthermore, Weber and Johnson demonstrated that, provided the Auger line profile does not change, the peak-to-peak height in the differentiated energy distribution curves is proportional to the Auger current in the peak. Therefore, in addition to its surface sensitivity, AES also can be used for quantitative studies of thin films.

Like AES, x-ray photoelectron spectroscopy (XPS) is a surface-sensitive technique that uses the energy distribution of electrons ejected from a thin film for quantitative analysis. However, in many ways the information provided by AES and XPS is complementary.

Type
Quantitative Analysis of Thin Films
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Auger, P., J. Phys. Radium 6 (1925) p. 205.CrossRefGoogle Scholar
2.Lander, J.J., Phys. Rev. 91 (1953) p. 1382.CrossRefGoogle Scholar
3.Harris, L.A., J. Appl. Phys. 39 (1968) p. 1419 and 1428.CrossRefGoogle Scholar
4.Weber, R.E. and Johnson, A.L, J. Appl. Phys. 40 (1967) p. 314.CrossRefGoogle Scholar
5.Seah, M.P. and Dench, W.A., Surface Interface Anal. 1 (1979) p. 2.CrossRefGoogle Scholar
6.Gomati, M.M. El, Janssen, A.P., Prutton, M., and Venables, J.A., Surf. Sci. 85 (1979) p. 309.CrossRefGoogle Scholar
7. Manual for model C15-255GAR, Perkin-Elmer Physical Electronics Division, Eden Prairie, M R USA.Google Scholar
8.Powell, C.J. and Seah, M.P., J. Vac. Sci. Technol. A 8 (1990) p. 735763.CrossRefGoogle Scholar
9.Rhead, G.E., Barthès, M.-G., and Argile, C., Thin Solid Films 82 (1981) p. 201211.CrossRefGoogle Scholar
10.Nebesny, Kenneth W., Maschhoff, Brian L., and Armstrong, Neal R., Anal. Chem. 61 (1989) p. 469A.CrossRefGoogle Scholar
11.Seah, M.P., in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M.P. (Wiley & Sons, New York, 1983) p. 193.Google Scholar
12.Slaughter, J.M., Kearney, P.A., Shen, D., and Falco, C., (unpublished).Google Scholar
13.Shirley, D.A., Phys. Rev. B 5 (1972) p. 4709.CrossRefGoogle Scholar
14.Madden, H.H. and Houston, J.E., J. Appl. Phys. 47 (1976) p. 3071.CrossRefGoogle Scholar
15.Burrell, M.C. and Armstrong, N.R., Appl. Surf. Sci. 17 (1983) p. 53.CrossRefGoogle Scholar
16.Nebesny, K.W. and Armstrong, N.R., J. Electron Spectrosc. 37 (1986) p. 355.CrossRefGoogle Scholar
17.Slaughter, J.M., Shapiro, Arye, Kearney, Patrick A., and Falco, Charles M., Phys. Rev. B 44 (1991) p. 3854.CrossRefGoogle Scholar
18.Slaughter, J.M., Kearney, Patrick A., and Falco, Charles M., Proc. SPIE 1547 (1991) p. 71, and to be published.Google Scholar
19.Hofmann, S., Mikrochim. Acta, Suppl. 8 (1979) p. 71.Google Scholar
20.Tarng, M.L. and Wehner, G.K., J. Appl. Phys. 44 (1973) p. 1534.CrossRefGoogle Scholar
21.Schrader, Manfred, Mikrochim. Acta, Suppl. 8 (1979) p. 377 and analysis of Schrader data in S. Hofmann, Mikrochim. Acta, Suppl. 8 (1979) p. 71.Google Scholar
22.Ichimura, S. and Shimizu, R., Surf. Sci. 112 (1981) p. 386.CrossRefGoogle Scholar
23. See Rhead, G.E., Barthès, M.-G., and Argile, C., Thin Solid Films 82 (1981) p. 201 and references therein.CrossRefGoogle Scholar
24.Bauer, E., Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 110 (1958) p. 372.CrossRefGoogle Scholar
25.Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London, Ser. A 198 (1949) p. 205; A 200, (1949) p. 125.Google Scholar
26.Yolmer, M. and Weber, A., Z. Phys. Chem. 119 (1926) p. 277.CrossRefGoogle Scholar
27.Stranski, J.N. and Krastanov, L., Ber. Akad. Wiss. Wien 146 (1938) p. 797.Google Scholar
28.Germar, R., Dürr, W., Krewer, J.W., Pescia, D., and Gudat, W., Appl. Phys. A 47 (1988) p. 393.Google Scholar
29.Kämper, K-P., Schmitt, W., Güntherodt, G., and Kuhlenbeck, H., Phys. Rev. B 38 (1988) p. 9451.CrossRefGoogle Scholar
30.Takayanagi, K., Kolb, D.M., Kambe, K., and Lehmpfuhl, G., Surf. Sci. 100 (1980) p. 407.CrossRefGoogle Scholar
31.Gürtler, K. and Jacobi, K., Surf. Sci. 134 (1938) p. 309.CrossRefGoogle Scholar
32.Sachtler, J.W.A., van Hove, M.A., Biberian, J.P., and Somorjai, G.A., Surf. Sci. 110 (1981) p. 19.CrossRefGoogle Scholar
33.Stampanoni, M., Vaterlaus, A., Aeschlimann, M., Meier, F., and Pescia, D., J. Appl. Phys. 64 (1988) p. 5321.CrossRefGoogle Scholar
34.Baumgart, P., PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 1989 (unpublished).Google Scholar
35.Capasso, C., Ray-Chaudhuri, A.K., Ng, W., Liang, S., Cole, R.K., Wallace, J., Cerrina, F., Margaritondo, G., Underwood, J.H., Kortright, J.B., and Perera, R.C.C., J. Vac. Sci. Technol. A 9 (1991) p. 1248.CrossRefGoogle Scholar
36. MAXIMUM optics are Mo/Si multilayers fabricated at the Lawrence Berkeley Laboratory's Center for X-ray Optics.Google Scholar
37.Capasso, C., Liang, S., Ng, W., Ray-Chaudhuri, A.K., Welnak, J.T., Cerrina, F., Underwood, J.H., Kortright, J.B., and Perera, R.C.C., Materials Research Society 1992 Fall Meeting abstract, and private communication.Google Scholar
38.Kirz, J., Ade, H., Jacomsen, C., Ko, C-H., Lindaas, S., McNulty, I., Sayre, D., Williams, S., Zhang, X., and Howells, M., Rev. Sci. Instrum. 63 (1992) p. 557.CrossRefGoogle Scholar
39.Yun, W.B., Viccaro, P.J., Lai, B., and Chrzas, J., Rev. Sci. Instrum. 63 (1992) p. 582.CrossRefGoogle Scholar
40.Ninomiya, Ken, Hirai, Yasuharu, Momose, Atsushi, Aoki, Sadao, and Suzuki, Keizo, J. Vac. Sci. Technol. A 9 (1991) p. 1244.CrossRefGoogle Scholar
41.Suzuki, Yoshio and Uchida, Fumihiko, Rev. Sci. Instrum. 63 (1992) p. 578.CrossRefGoogle Scholar
42.Voss, J., Kunz, C., Moewes, A., and Storjohann, I., Rev. Sci. Instrum. 63 (1992) p. 569.CrossRefGoogle Scholar