Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-21T15:23:52.451Z Has data issue: false hasContentIssue false

Sculpting light by arranging optical components with DNA nanostructures

Published online by Cambridge University Press:  08 December 2017

Mauricio Pilo-Pais
Affiliation:
Ludwig-Maximilians-Universität München, Germany; m.pilopais@lmu.de
Guillermo P. Acuna
Affiliation:
Technische Universität Braunschweig, Germany; g.acuna@tu-braunschweig.de
Philip Tinnefeld
Affiliation:
Ludwig-Maximilians-Universität München, Germany; philip.tinnefeld@cup.uni-muenchen.de
Tim Liedl
Affiliation:
Ludwig-Maximilians-Universität München, Germany; tim.liedl@physik.lmu.de
Get access

Abstract

DNA nanotechnology has developed into a state where the design and assembly of complex nanoscale structures is fast, reliable, cost effective, and accessible to nonexperts. Nanometer-precise positioning of organic (e.g., dyes and biomolecules) and inorganic (e.g., metal nanoparticles and colloidal quantum dots) components on DNA nanostructures is straightforward and modular. In this article, we identify the opportunities and challenges that DNA-assembled devices and materials face for optical antennas, metamaterials, and sensing applications. With the ability to arrange hybrid components in defined geometries, plasmonic effects will, for example, amplify molecular recognition transduction such that single-molecule events will be measureable with simple devices. On a larger scale, DNA nanotechnology has the potential to break the symmetry of common self-assembled functional materials, creating predefined optical properties such as refractive-index tuning and topological insulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maradudin, A., Sambles, J.R., Barnes, W.L., Eds., Modern Plasmonics (Elsevier, 2014).Google Scholar
Ding, B., Deng, Z., Yan, H., Cabrini, S., Zuckermann, R.N., Bokor, J., J. Am. Chem. Soc. 132, 1 (2010).Google Scholar
Bui, H., Onodera, C., Kidwell, C., Tan, Y., Graugnard, E., Kuang, W., Lee, J., Knowlton, W.B., Yurke, B., Hughes, W.L., Nano Lett. 10, 3367 (2010).CrossRefGoogle Scholar
Zhang, T., Neumann, A., Lindlau, J., Wu, Y., Pramanik, G., Naydenov, B., Jelezko, F., Schüder, F., Huber, S., Huber, M., Stehr, F., Högele, A., Weil, T., Liedl, T., J. Am. Chem. Soc. 137, 9776 (2015).Google Scholar
Stein, I.H., Steinhauer, C., Tinnefeld, P., J. Am. Chem. Soc. 133, 4193 (2011).Google Scholar
Schreiber, R., Do, J., Roller, E.-M., Zhang, T., Schüller, V.J., Nickels, P.C., Feldmann, J., Liedl, T., Nat. Nanotechnol. 9, 74 (2014).Google Scholar
Jungmann, R., Avendano, M.S., Dai, M., Woehrstein, J.B., Agasti, S.S., Feiger, Z., Rodal, A., Yin, P., Nat. Methods 13, 439 (2016).Google Scholar
Wang, P., Chatterjee, G., Yan, H., LaBean, T.H., Turberfield, A.J., Castro, C.E., Seelig, G., Ke, Y., MRS Bull. 42 (12), 889 (2017).Google Scholar
Novotny, L., van Hulst, N., Nat. Photonics 5, 83 (2011).Google Scholar
Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Müllen, K., Moerner, W.E., Nat. Photonics 3, 654 (2009).Google Scholar
Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F., Science 329, 930 (2010).Google Scholar
Santhosh, K., Bitton, O., Chuntonov, L., Haran, G., Nat. Commun. 7, 11823 (2016).Google Scholar
Hill, R.T., Mock, J.J., Urzhumov, Y., Sebba, D.S., Oldenburg, S.J., Chen, S.-Y., Lazarides, A.A., Chilkoti, A., Smith, D.R., Nano Lett. 10, 4150 (2010).Google Scholar
Ciraci, C., Hill, R.T., Mock, J.J., Urzhumov, Y., Fernandez-Dominguez, A.I., Maier, S.A., Pendry, J.B., Chilkoti, A., Smith, D.R., Science 337, 1072 (2012).Google Scholar
Akselrod, G.M., Argyropoulos, C., Hoang, T.B., Ciracì, C., Fang, C., Huang, J., Smith, D.R., Mikkelsen, M.H., Nat. Photonics 8, 1 (2014).Google Scholar
Hoang, T.B., Akselrod, G.M., Argyropoulos, C., Huang, J., Smith, D.R., Mikkelsen, M.H., Nat. Commun. 6, 7788 (2015).CrossRefGoogle Scholar
Chikkaraddy, R., de Nijs, B., Benz, F., Barrow, S.J., Scherman, O.A., Rosta, E., Demetriadou, A., Fox, P., Hess, O., Baumberg, J.J., Nature 535, 127 (2016).Google Scholar
Chhabra, R., Sharma, J., Wang, H., Zou, S., Lin, S., Yan, H., Lindsay, S., Liu, Y., Nanotechnology 20, 485201 (2009).Google Scholar
Acuna, G.P., Bucher, M., Stein, I.H., Steinhauer, C., Kuzyk, A., Holzmeister, P., Schreiber, R., Moroz, A., Stefani, F.D., Liedl, T., Simmel, F.C., Tinnefeld, P., ACS Nano 6, 3189 (2012).CrossRefGoogle Scholar
Samanta, A., Zhou, Y., Zou, S., Yan, H., Liu, Y., Nano Lett. 14, 5052 (2014).Google Scholar
Nicoli, F., Roos, M.K., Hemmig, E.A., Di Antonio, M., de Vivie-Riedle, R., Liedl, T., J. Phys. Chem. A 120, 9941 (2016).Google Scholar
Acuna, G.P., Moller, F.M., Holzmeister, P., Beater, S., Lalkens, B., Tinnefeld, P., Science 338, 506 (2012).Google Scholar
Busson, M.P., Rolly, B., Stout, B., Bonod, N., Bidault, S., Nat. Commun. 3, 962 (2012).Google Scholar
Busson, M.P., Bidault, S., Nano Lett. 14, 284 (2014).Google Scholar
Puchkova, A., Vietz, C., Pibiri, E., Wünsch, B., Sanz Paz, M., Acuna, G.P., Tinnefeld, P., Nano Lett. 15, 8354 (2015).Google Scholar
Vietz, C., Kaminska, I., Sanz Paz, M., Tinnefeld, P., Acuna, G.P., ACS Nano 11, 4969 (2017).Google Scholar
Zhang, T., Gao, N., Li, S., Lang, M.J., Xu, Q.-H., J. Phys. Chem. Lett. 6, 2043 (2015).Google Scholar
Pellegrotti, J.V., Acuna, G.P., Puchkova, A., Holzmeister, P., Gietl, A., Lalkens, B., Stefani, F.D., Tinnefeld, P., Nano Lett. 14, 2831 (2014).Google Scholar
Thacker, V.V., Herrmann, L.O., Sigle, D.O., Zhang, T., Liedl, T., Baumberg, J.J., Keyser, U.F., Nat. Commun. 5, 3448 (2014).CrossRefGoogle Scholar
Kühler, P., Roller, E.-M., Schreiber, R., Liedl, T., Lohmüller, T., Feldmann, J., Nano Lett. 14, 2914 (2014).Google Scholar
Pilo-Pais, M., Watson, A., Demers, S., Labean, T.H., Finkelstein, G., Nano Lett. 14, 2099 (2014).Google Scholar
Simoncelli, S., Roller, E.-M., Urban, P., Schreiber, R., Turberfield, A.J., Liedl, T., Lohmueller, T., ACS Nano 10, 9809 (2016).Google Scholar
Lim, D.-K., Jeon, K.-S., Hwang, J.-H., Kim, H., Kwon, S., Suh, Y.D., Nam, J.-M., Nat. Nanotechnol. 6, 452 (2011).Google Scholar
Prinz, J., Schreiber, B., Olejko, L., Oertel, J., Rackwitz, J., Keller, A., Bald, I., J. Phys. Chem. Lett. 4, 4140 (2013).Google Scholar
Prinz, J., Heck, C., Ellerik, L., Merk, V., Bald, I., Nanoscale 8, 5612 (2016).CrossRefGoogle Scholar
Bidault, S., Devilez, A., Ghenuche, P., Stout, B., Bonod, N., Wenger, J., ACS Photonics 3, 895 (2016).Google Scholar
Aissaoui, N., Moth-Poulsen, K., Kall, M., Johansson, P., Wilhelmsson, L.M., Albinsson, B., Nanoscale 9, 673 (2017).Google Scholar
Holzmeister, P., Pibiri, E., Schmied, J.J., Sen, T., Acuna, G.P., Tinnefeld, P., Nat. Commun. 5, 5356 (2014).Google Scholar
Raab, M., Vietz, C., Stefani, F.D., Acuna, G.P., Tinnefeld, P., Nat. Commun. 8, 13966 (2017).Google Scholar
Vogele, K., List, J., Pardatscher, G., Holland, N.B., Simmel, F.C., Pirzer, T., ACS Nano 10, 11377 (2016).Google Scholar
Gür, F.N., Schwarz, F.W., Ye, J., Diez, S., Schmidt, T.L., ACS Nano 10, 5374 (2016).CrossRefGoogle Scholar
Knudsen, J.B., Liu, L., Bank Kodal, A.L., Madsen, M., Li, Q., Song, J., Woehrstein, J.B., Wickham, S.F.J., Strauss, M.T., Schueder, F., Vinther, J., Krissanaprasit, A., Gudnason, D., Smith, A.A.A., Ogaki, R., Zelikin, A.N., Besenbacher, F., Birkedal, V., Yin, P., Shih, W.M., Jungmann, R., Dong, M., Gothelf, K.V., Nat. Nanotechnol. 10, 892 (2015).Google Scholar
Cannon, B.L., Kellis, D.L., Davis, P.H., Lee, J., Kuang, W., Hughes, W.L., Graugnard, E., Yurke, B., Knowlton, W.B., ACS Photonics 2, 398 (2015).Google Scholar
Dutta, P.K., Varghese, R., Nangreave, J., Lin, S., Yan, H., Liu, Y., J. Am. Chem. Soc. 133, 11985 (2011).Google Scholar
Hemmig, E.A., Creatore, C., Wünsch, B., Hecker, L., Mair, P., Parker, M.A., Emmott, S., Tinnefeld, P., Keyser, U.F., Chin, A.W., Nano Lett. 16, 2369 (2016).Google Scholar
Olejko, L., Bald, I., RSC Adv. 7, 23924 (2017).Google Scholar
Buckhout-White, S., Spillmann, C.M., Algar, W.R., Khachatrian, A., Melinger, J.S., Goldman, E.R., Ancona, M.G., Medintz, I.L., Curr. Opin. Chem. Biol. 5, 5615 (2014).Google Scholar
Wientjes, E., Renger, J., Curto, A.G., Cogdell, R., van Hulst, N.F., Nat. Commun. 5, 4236 (2014).Google Scholar
Tame, M.S., Mcenery, K.R., Özdemir, Ş.K., Lee, J., Maier, S.A., Kim, M.S., Nat. Phys. 9, 329 (2013).Google Scholar
Vasa, P., Lienau, C., ACS Photonics (2017), doi:10.1021/acsphotonics.7b00650.Google Scholar
Törmä, P., Barnes, W.L., Rep. Prog. Phys. 78, 13901 (2015).Google Scholar
Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J., Nature 436, 87 (2005).CrossRefGoogle Scholar
Roller, E.-M., Argyropoulos, C., Högele, A., Liedl, T., Pilo-Pais, M., Nano Lett. 16, 5962 (2016).Google Scholar
Busson, M.P., Rolly, B., Stout, B., Bonod, N., Larquet, E., Polman, A., Bidault, S., Nano Lett. 11, 5060 (2011).Google Scholar
Lee, Y.J., Schade, N.B., Sun, L., Fan, J.A., Bae, D.R., Mariscal, M.M., Lee, G., Capasso, F., Sacanna, S., Manoharan, V.N., Yi, G.R., ACS Nano 7, 11064 (2013).Google Scholar
Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E.-M., Högele, A., Simmel, F.C., Govorov, A.O., Liedl, T., Nature 483, 311 (2012).Google Scholar
Shen, X., Song, C., Wang, J., Shi, D., Wang, Z., Liu, N., Ding, B., J. Am. Chem. Soc. 134, 146 (2012).Google Scholar
Schreiber, R., Luong, N., Fan, Z., Kuzyk, A., Nickels, P.C., Zhang, T., Smith, D.M., Yurke, B., Kuang, W., Govorov, A.O., Liedl, T., Nat. Commun. 4, 2948 (2013).Google Scholar
Kuzyk, A., Schreiber, R., Zhang, H., Govorov, A.O., Liedl, T., Liu, N., Nat. Mater. 13, 1 (2014).Google Scholar
Zhou, C., Duan, X., Liu, N., Nat. Commun. 6, 8102 (2015).Google Scholar
Zhan, P., Dutta, P.K., Wang, P., Song, G., Dai, M., Zhao, S.-X., Wang, Z.-G., Yin, P., Zhang, W., Ding, B., Ke, Y., ACS Nano 11, 1172 (2017).CrossRefGoogle Scholar
Kuzyk, A., Yang, Y., Duan, X., Stoll, S., Govorov, A.O., Sugiyama, H., Endo, M., Liu, N., Nat. Commun. 7, 10591 (2016).Google Scholar
Kuzyk, A., Urban, M.J., Idili, A., Ricci, F., Liu, N., Sci. Adv. 3, e1602803 (2017).Google Scholar
Roller, E.-M., Khorashad, L.K., Fedoruk, M., Schreiber, R., Govorov, A.O., Liedl, T., Nano Lett. 15, 1368 (2015).Google Scholar
Fan, J.A., He, Y., Bao, K., Wu, C., Bao, J., Schade, N.B., Manoharan, V.N., Shvets, G., Nordlander, P., Liu, D.R., Capasso, F., Nano Lett. 11, 4859 (2011).Google Scholar
Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T., Nat. Mater. 9, 707 (2010).Google Scholar
Roller, E.-M., Besteiro, L.V., Pupp, C., Khorashad, L.K., Govorov, A.O., Liedl, T., Nat. Phys. 13, 761 (2017).Google Scholar
Poddubny, A., Miroshnichenko, A., Slobozhanyuk, A., Kivshar, Y., ACS Photonics 1, 101 (2014).Google Scholar
Berini, P., De Leon, I., Nat. Photonics 6 (1), 16 (2012).Google Scholar
Jahani, S., Jacob, Z., Nat. Nanotechnol. 11, 23 (2016).Google Scholar
Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C., Nature 461, 74 (2009).Google Scholar
Park, D.J., Zhang, C., Ku, J.C., Zhou, Y., Schatz, G.C., Mirkin, C.A., Proc. Natl. Acad. Sci. U.S.A. 112, 977 (2015).Google Scholar
Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V., Gang, O., Science 351, 3 (2016).Google Scholar
Melinger, J.S., Sha, R., Mao, C., Seeman, N.C., Ancona, M.G., J. Phys. Chem. B 120, 12287 (2016).Google Scholar
Zhang, T., Hartl, C., Fischer, S., Frank, K., Nickels, P., Heuer-Jungemann, A., Nickel, B., Liedl, T., Prepr. Arxiv arXiv:1706.06965 (2017).Google Scholar
Mohammadreza Khorasaninejad, F.C., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F., Science 352, 1190 (2016).Google Scholar
Kershner, R.J., Bozano, L.D., Micheel, C.M., Hung, A.M., Fornof, A.R., Cha, J.N., Rettner, C.T., Bersani, M., Frommer, J., Rothemund, P.W.K., Wallraff, G.M., Nat. Nanotechnol. 4, 557 (2009).Google Scholar
Gopinath, A., Miyazono, E., Faraon, A., Rothemund, P.W.K., Nature 535, 401 (2016).Google Scholar
Pibiri, E., Holzmeister, P., Lalkens, B., Acuna, G.P., Tinnefeld, P., Nano Lett. 14, 3499 (2014).Google Scholar
Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T.A., Feldmann, J., Nichtl, A., Kürzinger, K., Nano Lett. 3, 935 (2003).Google Scholar
Taylor, A.B., Zijlstra, P., ACS Sensors 2, 1103 (2017).Google Scholar
Wei, Q., Acuna, G., Kim, S., Vietz, C., Tseng, D., Chae, J., Shir, D., Luo, W., Tinnefeld, P., Ozcan, A., Sci. Rep. 7, 2124 (2017).Google Scholar
Wang, D., Vietz, C., Schröder, T., Acuna, G., Lalkens, B., Tinnefeld, P., Nano Lett. 17, 9 (2017).Google Scholar