Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T06:54:55.790Z Has data issue: false hasContentIssue false

Assembled Semiconductor Nanowire Thin Films for High-Performance Flexible Macroelectronics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A new concept of macroelectronics using assembled semiconductor nanowire thin films holds the promise of significant performance improvement. In this new concept, a thin film of oriented semiconductor nanowires is used to produce thin-film transistors (TFTs) with conducting channels formed by multiple parallel single-crystal nanowire paths. There fore, charges travel from source to drain within single crystals, ensuring high carrier mobility. Recent studies have shown that high-performance silicon nanowire TFTs and high-frequency circuits can be readily produced on a variety of substrates including glass and plastics using a solution assembly process. The device performance of these nanowire TFTs not only greatly surpasses that of solution-processed organic TFTs, but is also significantly better than that of conventional amorphous or polycrystalline silicon TFTs, approaching single-crystal silicon-based devices. Furthermore, with a similar frame-work, Group III-V or II-VI nanowire or nanoribbon materials of high intrinsic carrier mobility or optical functionality can be assembled into thin films on flexible substrates to enable new multifunctional electronics/optoelectronics that are not possible with traditional macroelectronics. This can have an impact on a broad range of existing applications, from flat-panel displays to image sensor arrays, and enable a new generation of flexible, wearable, or disposable electronics for computing, storage, and wireless communication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gelsinger, P.P., Gargini, P.A., Parker, G.H., and Yu, A.Y.C., IEEE Spectrum (October 1989) p. 43.CrossRefGoogle Scholar
2.Meindl, J.D., Chen, Q., and Davis, J.A., Science 293 (2001) p. 2044.CrossRefGoogle Scholar
3.Reuss, R.H., Hopper, D.G., and Park, J.G., MRS Bull. 31 (June 2006) p. 447.CrossRefGoogle Scholar
4.Shur, M.S., Wilson, P., and Urban, D., eds., Mater. Res. Soc. Symp. Proc. 736 (Materials Research Society, Warrendale, PA, 2002).Google Scholar
5.Uchikoga, S., MRS Bull. 27 (November 2002) p. 881.CrossRefGoogle Scholar
6.Street, R.A., Technology and Applications of Amorphous Silicon (Springer, Berlin, 2000).CrossRefGoogle Scholar
7.Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Edwing, J., and Drzaic, P., Proc. Natl. Acad. Sci. USA 98 (2001) p. 4835.CrossRefGoogle Scholar
8.Garnier, F., Hajlaoui, R., Yassar, A., and Srivastava, P., Science 265 (1994) p. 1684.CrossRefGoogle Scholar
9.Crone, B., Dodabalapur, A., Lin, Y.Y., Fillas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H., and Li, W., Nature 403 (2000) p. 521.CrossRefGoogle Scholar
10.Dimitrakopoulos, C.D. and Mascaro, D.J., IBM J. Res. Dev. 45 (2001) p. 11.CrossRefGoogle Scholar
11.Ridley, B.A., Nivi, B., and Jacobson, J.M., Science 286 (1999) p. 746.CrossRefGoogle Scholar
12.Talapin, D.V. and Murray, C.B., Science 310 (2005) p. 86.CrossRefGoogle Scholar
13.Kagan, C.R., Mitzi, D.B., and Dimitrakopoulos, C.D., Science 286 (1999) p. 945.CrossRefGoogle Scholar
14.Mitzi, D.B., Chondroudis, K., and Kagan, C.R., IBM J. Res. Dev. 45 (2001) p. 29.CrossRefGoogle Scholar
15.Cui, Y., Zhong, Z., Wang, D., Wang, W., and Lieber, C.M., Nano Lett. 3 (2003) p. 149.CrossRefGoogle Scholar
16.Duan, X., Huang, Y., Cui, Y., and Lieber, C.M., Molecular Nanoelectronics, edited by Reed, M.A. and Lee, T. (American Scientific Publishers, Stevenson Ranch, Calif., 2003) p. 199.Google Scholar
17.Tans, S.J., Verschueren, R.M., and Dekker, C., Nature 393 (1998) p. 49.CrossRefGoogle Scholar
18.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P., Appl. Phys. Lett. 73 (1998) p. 2447.CrossRefGoogle Scholar
19.Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P.L., Nano Lett. 2 (2002) p. 869.CrossRefGoogle Scholar
20.Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J.W., Empedocles, S., and Goldman, J.L., Nature 425 (2003) p. 274.CrossRefGoogle Scholar
21.Jin, S., Whang, D., McAlpine, M.C., Friedman, R.S., Wu, Y., and Lieber, C.M., Nano Lett. 4 (2004) p. 915.CrossRefGoogle Scholar
22.Menard, E., Lee, K.J., Khang, D.-Y., Nuzzo, R.G., and Rogers, J.A., Appl. Phys. Lett. 84 (2004) p. 5398.CrossRefGoogle Scholar
23.Duan, X., Huang, Y., Wang, J., Cui, Y., and Lieber, C.M., Nature 409 (2001) p. 66.CrossRefGoogle Scholar
24.Huang, Y., Duan, X., Wei, Q., and Lieber, C.M., Science 291 (2001) p. 630.CrossRefGoogle Scholar
25.Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P., Nano Lett. 3 (2003) p. 1251.CrossRefGoogle Scholar
26.Whang, D., Jin, S., Wu, Y., and Lieber, C.M., Nano Lett. 3 (2003) p. 1255.CrossRefGoogle Scholar
27.Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
28.Mizuno, T., Sugiyama, N., Kurobe, A., and Takagi, S., IEEE Trans. Electron. Dev. 48 (2001) p. 1612.CrossRefGoogle Scholar
29.Hara, A., Takei, M., Takeuchi, F., Suga, K., Yoshino, K., Chida, M., Kakehi, T., Ebiko, Y., Sano, Y., and Sasaki, N., Jpn. J. Appl. Phys. Pt. 1 43 (2004) p. 1269.CrossRefGoogle Scholar
30.Duan, X., unpublished results.Google Scholar
31.Snow, E.S., Campbell, P.M., Ancona, M.G., and Novak, J.P., Appl. Phys. Lett. 86 033105 (2005).CrossRefGoogle Scholar
32.McAlpine, M.C., Friedman, R.S., Jin, S., Lin, K., Wang, W.U., and Lieber, C.M., Nano Lett. 3 (2003) p. 1531.CrossRefGoogle Scholar
33.Sun, Y., Menard, E., Rogers, J.A., Kim, H.-S., Kim, S., Chen, G., Adesida, I., Dettmer, R., Cortez, R., and Tewksbury, A., Appl. Phys. Lett. 88 183509 (2006).CrossRefGoogle Scholar
34.Duan, X. and Lieber, C.M., Adv. Mater. 12 (2000) p. 298.3.0.CO;2-Y>CrossRefGoogle Scholar
35.Huang, Y., Duan, X., Cui, Y., and Lieber, C.M., Nano Lett. 2 (2002) p. 101.CrossRefGoogle Scholar
36.Sakaki, H., Surf. Sci. 267 (1992) p. 623.CrossRefGoogle Scholar
37.Lauhon, L.J., Gudiksen, M.S., Wang, D., and Lieber, C.M., Nature 420 (2002) p. 57.CrossRefGoogle Scholar
38.Lu, W., Xiang, J., Timko, B.P., Wu, Y., and Lieber, C.M., Proc. Natl. Acad. Sci. USA 102 (2005) p. 10046.CrossRefGoogle Scholar
39.Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., and Lieber, C.M., Nature 441 (2006) p. 489.CrossRefGoogle Scholar
40.Li, Y., Xiang, J., Qian, F., Gradecak, S., Wu, Y., Yan, H., Blom, D.A., and Lieber, C.M., Nano Lett. 6 (2006) p. 1468.CrossRefGoogle Scholar
41.Huang, Y., Duan, X., and Lieber, C.M., Small 1 (2005) p. 142.CrossRefGoogle Scholar
42.Huang, Y. and Lieber, C.M., Pure Appl. Chem. 76 (2004) p. 2051.CrossRefGoogle Scholar
43.Qian, F., Gradecak, S., Li, Y., Wen, C., and Lieber, C.M., Nano Lett. 5 (2005) p. 2287.CrossRefGoogle Scholar
44.Pan, Z., Dai, Z., and Wang, Z.-L., Science 291 (2001) p. 1947.CrossRefGoogle Scholar
45.Duan, X., Huang, Y., Argarawal, R., and Lieber, C.M., Nature 421 (2003) p. 241.CrossRefGoogle Scholar
46.Weimer, P.K., Proc. IEEE 56 (1962) p. 1462.Google Scholar
47.Mack, S., Meitl, M., Baca, A., Zhu, Z.-T., and Rogers, J.A., Appl. Phys. Lett. 88 213101 (2006).CrossRefGoogle Scholar
48.Sun, Y., Khang, D.-Y., Hurley, K., Nuzzo, R.G., and Rogers, J.A., Adv. Funct. Mater. 15 (2005) p. 30.CrossRefGoogle Scholar
49.Lee, K., Lee, J., Hwang, H., Reitmeier, Z., Davis, R.F., Rogers, J.A., and Nuzzo, R.G., Small 1 (2005) p. 1164.CrossRefGoogle Scholar
50.Friedman, R.S., McAlpine, M.C., Ricketts, D.S., Ham, D., and Lieber, C.M., Nature 434 (2005) p. 1085.CrossRefGoogle Scholar
51.Clemens, W., Fix, W., Ficker, J., Knoblock, A., and Ullmann, A., J. Mater. Res. 19 (2004) p. 1963.CrossRefGoogle Scholar
52.Hiranaka, K., Yamaguchi, T., and Yanagisawa, S., IEEE Electron Dev. Lett. 7 (1984) p. 224.CrossRefGoogle Scholar
53.Mishima, Y., Yoskino, K., Takeuchi, F., Ohgata, K., Takei, M., and Sasaki, N., IEEE Electron Dev. Lett. 22 (2001) p. 89.CrossRefGoogle Scholar
54.Becker, J.S., Suh, S., and Gordon, R.G., Chem. Mater. 15 (2003) p. 2969.CrossRefGoogle Scholar