Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T01:10:34.257Z Has data issue: false hasContentIssue false

Biomechanical Properties of Fibroblasts

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Cells are a complex topic of study for materials scientists. They are the fundamental building blocks of living organisms, able to sense their environment and act in response to it. In addition to their many biochemical functions, cells also play a mechanical role: They hold organs in place and move to the locations where they are needed in processes like wound healing, metastasis, or embryogenesis. Their mechanical behavior is mostly determined by a meshwork of three types of connected biopolymers (actin microfilaments, microtubules, and intermediate filaments) that compose a structural framework called the cytoskeleton, surrounded by a lipid membrane (Figure 1). In contrast to this simple picture, cells are very different from polymer gels or liposomes: They are active materials, powered by chemically stored energy. Their mechanical condition is closely linked to their biochemical function; for example, they may “commit suicide,” following a well-defined protocol known as apoptosis, which can be triggered by their mechanical state.

The enormous progress of modern cell biology combined with new micromanipulation techniques is leading researchers toward a more global understanding of the mechanical properties of cells and toward finding a functional link between biochemistry, chemical signaling, and cell mechanics, thus crossing the boundaries between these subjects.

The characterization of cell mechanical behavior has been the object of numerous studies. Red blood cells are a simple model system; if deprived of a nucleus while retaining a constant surface area, they have properties reminiscent of lipid vesicles.

Type
Materials Science of the Cell
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evans, E.A., Methods Enzymol. 173 (1989) p. 3.CrossRefGoogle Scholar
2.Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E., Nature 397 (1999) p. 50.CrossRefGoogle Scholar
3.Evans, E.A. and Yeung, A., Biophys. J. 56 (1989) p. 151.CrossRefGoogle Scholar
4.Tran-Son-Tay, R., Needham, D., Teung, A., and Hochmuth, M., Biophys. J. 60 (1991) p. 856.CrossRefGoogle Scholar
5.Thoumine, O., Cardoso, O., and Meister, J.J., Eur. Biophys. J. 28 (1999) p. 222.CrossRefGoogle Scholar
6.Lauffenburger, D.A. and Horwitz, A.F., Cell 84 (1996) p. 359.CrossRefGoogle ScholarPubMed
7.Felder, S. and Elson, E.L., J. Cell Biol. 111 (1990) p. 2513.CrossRefGoogle Scholar
8.Thoumine, O. and Ott, A., J. Cell Sci. 110 (1997) p. 2109.CrossRefGoogle Scholar
9.Thoumine, O., Ott, A., Cardoso, O., and Meister, J.J., J. Biochem. Biophys. Methods 39 (1999) p. 47.CrossRefGoogle Scholar
10.Wang, N. and Ingber, D.E., Biophys. J. 66 (1994) p. 2181.CrossRefGoogle Scholar
11.Bausch, A.R., Ziemann, F., Boulbitch, A.A., Jacobson, K., and Sackmann, E., Biophys. J. 75 (1998) p. 2038.CrossRefGoogle Scholar
12.Maniotis, A.J., Chien, C.S., and Ingber, D.E., Proc. Natl. Acad. Sci. U.S.A. 94 (1997) p. 849.CrossRefGoogle Scholar
13.Thoumine, O. and Ott, A., Biorheoloty 34 (1997) p. 309.CrossRefGoogle Scholar
14.Thoumine, O., Kocian, P., Kottelat, A., and Meister, J.J. (unpublished manuscript).Google Scholar
15.Burridge, K. and Chrzanowska-Wodnicka, M., Annu. Rev. Cell Dev. Biol. 12 (1996) p. 463.CrossRefGoogle Scholar
16.Crowley, E. and Horwitz, A.F., J. Cell Biol. 131 (1995) p. 525.CrossRefGoogle Scholar
17.Sung, K.-L.P., Kwan, M.K., Maldonado, F., and Akeson, W.H., J. Biomech. Eng. 116 (1994) p. 237.CrossRefGoogle Scholar
18.Thoumine, O. and Meister, J.J. (unpublished manuscript).Google Scholar
19.Truskey, G.A. and Pirone, J.S., J. Biomed. Mater. Res. 24 (1990) p. 1333.CrossRefGoogle Scholar
20.Lotz, M.M., Burdsal, C.A., Erickson, H.P., and McClay, D.R., J. Cell Biol. 109 (1989) p. 1795.CrossRefGoogle Scholar
21.Thoumine, O., Ott, A., and Louvard, D., Cell Motil. Cytoskel. 33 (1996) p. 276.3.0.CO;2-7>CrossRefGoogle Scholar
22.Bell, G.I., Science 200 (1978) p. 618.CrossRefGoogle Scholar
23.Cozens-Roberts, C., Lauffenburger, D.A., and Quinn, J.A., Biophys. J. 58 (1990) p. 841.CrossRefGoogle Scholar
24.Sheetz, M.P., Felsenfeld, D.P., and Galbraith, C.G., Trends Cell Biol. 8 (1998) p. 51.CrossRefGoogle Scholar
25.Felsenfeld, D.P., Choquet, D., and Sheetz, M.P., Nature 383 (1996) p. 438.CrossRefGoogle Scholar
26.Schmidt, C.E., Horwitz, A.F., Lauffenburger, D.A., and Sheetz, M.P., J. Cell Biol. 123 (1993) p. 977.CrossRefGoogle Scholar
27.Choquet, D., Felsenfeld, D.P., and Sheetz, M.P., Cell 88 (1997) p. 39.CrossRefGoogle Scholar
28.Schmidt, C.E., Chen, T., and Lauffenburger, D.A., Biophys. J. 67 (1994) p. 461.CrossRefGoogle Scholar
29.Thoumine, O. and Meister, J.J. (unpublished manuscript).Google Scholar
30.Kolodney, M.S. and Wysolmerski, R.B., J. Cell Biol. 117 (1992) p. 73.CrossRefGoogle Scholar
31.Harris, A.K., Wild, P., and Stopak, D., Science 208 (1980) p. 177.CrossRefGoogle Scholar
32.Thoumine, O. and Ott, A., Cell Motil. Cytoskel. 35 (1996) p. 269.3.0.CO;2-3>CrossRefGoogle Scholar
33.Oliver, T., Lee, J., and Jacobson, K., Semin. Cell Biol. 5 (1994) p. 139.CrossRefGoogle Scholar
34.Galbraith, C.G. and Sheetz, M.P., Proc. Natl. Acad. Sci. U.S.A. 94 (1997) p. 9114.CrossRefGoogle Scholar
35.Holzapfel, G., Wehland, J., and Weber, K., Exp. Cell Res. 148 (1983) p. 117.CrossRefGoogle Scholar
36.Danowski, B.A., J. Cell Sci. 93 (1989) p. 255.CrossRefGoogle Scholar
37.Ingber, D.E., J. Cell Sci. 104 (1993) p. 613.CrossRefGoogle Scholar
38.Kolodney, M.S. and Elson, E.L., Proc. Natl. Acad. Sci. U.S.A. 92 (1995) p. 10252.CrossRefGoogle Scholar
39.Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., and Ingber, D.E., Science 276 (1997) p. 1425.CrossRefGoogle Scholar
40.Davies, P.F., Physiol. Rev. 75 (1995) p. 519.CrossRefGoogle Scholar
41.Chicurel, M.E., Chen, C.S., and Ingber, D.E., Curr. Opin. Cell Biol.; 10 (1998) p. 232.CrossRefGoogle Scholar
42.Tranquillo, R.T., Lauffenburger, D.A., and Sigmond, S.H., J. Cell Biol. 106 (1988) p. 303.CrossRefGoogle Scholar
43.Heidemann, S.R., Kaech, S., Buxbaum, R.E., and Matus, A., J. Cell Biol. 145 (1999) p. 109.CrossRefGoogle Scholar