Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T03:32:41.409Z Has data issue: false hasContentIssue false

Computational Alchemy: The Search for New Superhard Materials

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

A central challenge to modern materials science is the rational design and synthesis of new materials possessing exceptional properties. Recent advances in first-principles modeling methods and the availability of increasingly powerful computational resources make this goal increasingly achievable. The strength of these modeling methods lies in their predictive ability. They are able to reproduce the crystal structures and elastic properties of a large class of materials to within 2–3% of experimental values and have predicted a number of phase transitions that have been verified experimentally.

Despite the power of these methods, the process of designing materials from first principles is not usually a straight-forward or simple one. It requires overcoming a number of obstacles, some of them quite formidable. First a calculable figure of merit that correlates well with the desired property must be identified. While this may be straightforward in some cases, in others—such as predicting the ability of a material to isolate radionuclides over million-year time scales—the process of reducing complex properties to a few calculable variables can be rather difficult. Next a promising chemical system and a realistic set of crystal structures must be selected. This is not trivial because predicting the structures that can crystallize in a given system can be exceedingly challenging. However a wide variety of methods are available to aid in the generation of promising structures — comparative crystallography, algorithms based upon the concepts of crystalline nets and close packing, modern alloy theory methods, and simulated annealing strategies being some examples.

Type
Technical Features
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cohen, M.L., Science 234 (1986) p. 549.CrossRefGoogle Scholar
2.Cohen, M.L., Nature 338 (1989) p. 291.CrossRefGoogle Scholar
3.Catlow, C.R.A. and Price, G.D., Nature 347 (1990) p. 243.CrossRefGoogle Scholar
4.Cohen, M.L., Philos. Trans. R. Soc. London, Ser. A 334 (1991) p. 501.Google Scholar
5.Cohen, M.L., Science 261 (1993) p. 308.Google Scholar
6.Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64 (1992) p. 1045.CrossRefGoogle Scholar
7.Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.K., Nature 374 (1995) p. 243.CrossRefGoogle Scholar
8.Hazen, R.M. and Finger, L.W., Comparative Crystallography (John Wiley & Sons, Chichester, 1982).Google Scholar
9.Wells, A.F., Structural Inorganic Chemistry, 5th ed. (Clarendon Press, Oxford, 1984).Google Scholar
10.Hyde, B.G. and Andersson, S., Inorganic Crystal Structures (John Wiley & Sons, New York, 1989).Google Scholar
11.de Faria, J. Lima, Structural Mineralogy: An Introduction (Kluwer, Boston, 1994).CrossRefGoogle Scholar
12.Pettifor, D.G., J. Phase Equilibrium 17 (1996) p. 384.CrossRefGoogle Scholar
13.Hohan, A.F. and Ceder, G., Comp. Mater. Sci. 8 (1997) p 142.Google Scholar
14.Deem, M.W. and Newsam, J.M., J. Am. Chem. Soc. 114 (1992) p. 7189.CrossRefGoogle Scholar
15.Boisen, M.B., Gibbs, G.V., and Bukowinski, M.S.T., Phys. Chem. Min. 21 (1994) p. 269.CrossRefGoogle Scholar
16.Bundy, F.P., Sci. Am. 231 (1974) p. 62.CrossRefGoogle Scholar
17.Status and Application of Diamond and Diamond-Like Materials: An Emerging Technology, MDA 903-89-K-0078 (National Research Council, Washington, 1990).Google Scholar
18.DeVries, R.C., in Diamond and Diamond-Like Films and Coatings, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Roidl, P., NATO ASI Series B, vol. 266 (Plenum Press, New York, 1991) p. 151.CrossRefGoogle Scholar
19.Riedel, R., Adv. Mater. 4 (1992) p. 759.CrossRefGoogle Scholar
20.Schnick, W.Agnew. Int. Ed. Engl. 32 (1993) p. 1580.CrossRefGoogle Scholar
21.Riedel, R., Adv. Mater. 6 (1994) p. 549.CrossRefGoogle Scholar
22.Lieber, C.M. and Zhang, Z.J., Adv. Mater. 6 (1994) p. 497.CrossRefGoogle Scholar
23.Fang, P.H., J. Mater. Sci. Lett. 14 (1995) p. 536.CrossRefGoogle Scholar
24.Lieber, C.M. and Zhang, Z.J., Chem. Ind. 22 (1995) p. 922.Google Scholar
25.DeVries, R.C., Diamond Rel. Mater. 4 (1995) p. 1093.CrossRefGoogle Scholar
26.Subrayan, R.P. and Rasmussen, P.G., Trends Polym. Sci. 3 (1995) p. 165.Google Scholar
27.Li, D., Cutiongco, E., Chung, Y.W., Wong, M.S., and Sproul, W.D., Diamond Films Tech. 5 (1995) p. 261.Google Scholar
28.Marton, D., Boyd, K.J., and Rabalais, J.W., Int. J. Mod. Phys. 9 (1995) p. 3527.CrossRefGoogle Scholar
29.Liu, A.Y., in Quantum Theory of Real Materials, edited by Chelikowsky, J.R. and Louie, S.G. (Kluwer, Boston, 1996).Google Scholar
30.Badding, J.V., Adv. Mater. 9 (1997) p. 877.CrossRefGoogle Scholar
31.Sung, C.M. and Sung, M., Mat. Chem. Phys. 43 (1996) p. 1.CrossRefGoogle Scholar
32.Plendl, J.N., Mittra, S.S., and Gielisse, P.J., Phys. Status Solidi 12 (1965) p. 367.CrossRefGoogle Scholar
33.Beckmann, G., Kristall. Technik 6 (1971) p. 109.CrossRefGoogle Scholar
34.Goble, R.J. and Scott, S.D., Can. Min. 23 (1985) p. 273.Google Scholar
35.Yang, W., Parr, R.G., and Uytterhoeven, L., Phys. Chem. Min. 15 (1987) p. 191.CrossRefGoogle Scholar
36.Cohen, M.L., J. Hard Mater. 2 (1991) p. 13.Google Scholar
37.Leger, J.M., Haines, J., Schmidt, M., Petitet, J.P., Pereira, A.S., and Dajornada, J.A.H., Nature 3S3 (1996) p. 401.CrossRefGoogle Scholar
38.Liu, A.Y. and Cohen, M.L., Science 245 (1989) p. 841.CrossRefGoogle Scholar
39.Cohen, M.L., Phys. Rev. B 32 (1985) p. 7988.CrossRefGoogle Scholar
40.Liu, A.Y. and Cohen, M.L., Phys. Rev. 41 (1990) p. 10727.CrossRefGoogle Scholar
41.Liu, A.Y. and Wentzcovitch, R.M., Phys. Rev. 50 (1994) p. 10362.CrossRefGoogle Scholar
42.Yao, H. and Ching, W.Y., Phys. Rev. 50 (1994 p. 11231.CrossRefGoogle Scholar
43.Ortega, J. and Sankey, O.F., Phys. Rev. 51 (1995) p. 2624.CrossRefGoogle Scholar
44.Reyes-Serrato, A., Galvän, D.H., and Garzön, I.L., Phys. Rev. 52 (1995) p. 6293.CrossRefGoogle Scholar
45.Teter, D.M. and Hemley, R.J., Science 271 (1996) p. 53.CrossRefGoogle Scholar
46.Han, S. and Ihm, J., Phys. Rev. B 55 (1997) p. 15349.CrossRefGoogle Scholar
47.O'Neill, H., The Hardness of Metals and Its Measurement (Chapman & Hall, London, 1934).Google Scholar
48.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
49.Small, L., Hardness: Theory and Practice (Service Diamond Tool Co., Ferndale, MI, 1966).Google Scholar
50.Tabor, D., Rev. Phys. Tech. 1 (1970) p. 145.CrossRefGoogle Scholar
51.Ivan'ko, A.A., Handbook of Hardness Data (translated from Russian) (Keter, Jerusalem, 1971).Google Scholar
52.Tabor, D., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, 1986) p. 129.Google Scholar
53.Szymanski, A. and Szymanski, J.M., Hardness Estimation of Minerals, Rocksand Ceramic Materials (Elsevier, Amsterdam, 1989).Google Scholar
54.McColm, I.J., Ceramic Hardness (Plenum Press, New York, 1990).CrossRefGoogle Scholar
55.Tabor, D., Philos. Mag. A74 (1996) p. 1207.CrossRefGoogle Scholar
56.Plendl, J.N. and Gielisse, P.J., Phys. Rev. 125 (1961) p. 828.CrossRefGoogle Scholar
57.Grimvall, G. and Thiessen, M., in Inst. Phys. Conf. Ser. No. 75 (Adam Hilger Ltd., Boston, 1986) p. 61.Google Scholar
58.Julg, A., Phys. Chem. Min. 3 (1987) p. 45.CrossRefGoogle Scholar
59.Kisly, P.S., in Inst. Phys. Conf. Ser. No. 75 (Adam Hilger Ltd., Boston, 1986) p. 107.Google Scholar
60.Oilman, J.J., Science 261 (1993) p. 1436.Google Scholar
61.Oilman, J.J., Mater. Sci. Eng. A 209 (1996) p. 74.Google Scholar
62.Mehl, M.J., Klein, B.M., and Papaconstantopoulos, D.A., in Intcrmetallic Compounds, Principles and Practice, edited by Westbrook, J.H. and Fleischer, R.L., vol. I (John Wiley & Sons, London, 1994).Google Scholar
63.Gilman, J.J., J. Appl. Phys. 39 (1968) p. 6086.CrossRefGoogle Scholar
64.Gerk, A.P., J. Mater. Sci. 12 (1977) p. 735.CrossRefGoogle Scholar
65.Teter, D.M. and Ashcroft, N.W. (unpublished manuscript).Google Scholar
66.DeVries, R.C., Synthesis and Properties of Diamond and Cubic Boron Nitride, Report No. 81CRD110 (General Electric, Schenectady, 1981).CrossRefGoogle Scholar
67.Gilman, J.J., in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M.D., Bogy, D.B., Donley, M.S., and Field, J.E. (Materials Research Society, Pittsburgh, 1995)p. 281.Google Scholar
68.Grimsditch, M. and Ramdas, A., Phys. Rev. B 11 (1975) p. 3139.CrossRefGoogle Scholar
69.Harrison, W.A., in Electronic Structure and the Properties of Solids (Freeman, W.H., San Francisco, 1980) p. 185.Google Scholar
70.Hall, T.H., Science 148 (1965) p. 1331.CrossRefGoogle Scholar
71.Hall, T.H. and Compton, L.A., Inorg. Chem. 4 (1965) p. 1213.CrossRefGoogle Scholar
72.Zhogolev, D.A., Bugaets, O.P., and Marushko, I.A., Zh. Struk. Khim. 22 (1981) p. 46; Inorg. Chem. 22 (1981) p. 33.Google Scholar
73.Niemyski, T., Appenheimer, S., Panczyk, J., and Badzian, A., J. Cryst. Growth 5 (1969) p. 401.CrossRefGoogle Scholar
74. Jpn. Kokai Tokkyo Koho, Japanese Patent No. 85-21812 (1985).Google Scholar
75.Endo, T., Sato, T., and Shimada, M., J Mater. Sci. Lett. 11 (1987) p. 683.CrossRefGoogle Scholar
76.Liu, X.Y., Zhao, X.D., and Su, W.H., in High Pressure Science and Technology: AIRAPT-1993 (American Institute of Physics, 1993) p. 1279.Google Scholar
77.Grumbach, M.P., Sankey, O.F., and McMillan, P.F., Phys. Rev. B 52 (1995) p. 15807.CrossRefGoogle Scholar
78.Stevens, A.J., Koga, T., Agee, C.B., Aziz, M.J., and Lieber, C.M., J. Am. Chem. Soc. 118 (1996) p. 10900.CrossRefGoogle Scholar
79.Corkill, J.L. and Cohen, M.L., Phys. Rev. B 48 (1993) p. 17622.CrossRefGoogle Scholar
80.Guo, Y. and Goddard, W.A., Chem. Phys. Lett. 237 (1995) p. 72.CrossRefGoogle Scholar
81.Hughbanks, T. and Tian, Y., Solid State Commun. 96 (1995) p. 321.CrossRefGoogle Scholar
82.Teter, D.M. and Hemley, R.J. (unpublished manuscript).Google Scholar
83.Julian, M.M. and Gibbs, G.V., J. Phys. Chem. 92 (1988) p. 1444.CrossRefGoogle Scholar
84.Badding, J.V. and Nesting, D.C, Chem. Mater. 8 (1996) p. 535.CrossRefGoogle Scholar
85.Tossell, J.A., J. Mag. Res. 127 (1997) p. 49.CrossRefGoogle Scholar
86.Kawaguchi, M., Adv. Mater. 9 (1997) p. 615.CrossRefGoogle Scholar
87.Butylenko, A.K., Samsonov, G.V., Timofeeva, L.I., and Makarenko, G.N., Pis'ma Zh. Tekh. Fiz. 3 (1977) p. 186.Google Scholar
88.Sirota, N.N. and Zhuk, M.M., Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 3 (1979) p. 122.Google Scholar
89.Sumya, H., Japanese Patent No. 89-208,371 (1989).Google Scholar
90.Wedlake, R.J. and Penny, A.L., Synthesis of a Hard Material, Ger. Offen. No. 2,806,070; 8/17/78; filed 2/16/77.Google Scholar
91.Badzian, A.J., Mater. Res. Bull. 16 (1981) p. 1385.CrossRefGoogle Scholar
92.Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Chem. Mater. 6 (1994) p. 2246.CrossRefGoogle Scholar
93.Knittle, E., Kaner, R.B., Jeanloz, R., and Cohen, M.L., Phys. Rev. B 51 (1995) p. 12149.CrossRefGoogle Scholar
94.Bando, Y., Nakano, S., and Kurashima, K., J. Electron. Microsc. 45 (1996) p. 135.CrossRefGoogle Scholar
95.Komatsu, T., Nimura, M., Kakudate, Y., and Fujiwara, S., J. Mater. Res. 6 (1996) p. 1799.Google Scholar
96.Sasaki, T., Akaishi, M., Yamaoka, S., Fujiki, Y., and Oikawa, T., Chem. Mater. 5 (1993) p. 695.CrossRefGoogle Scholar
97.Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Mater. Sci. Eng. A 209 (1996) p. 29.CrossRefGoogle Scholar
98.Badzian, A., Syntezy Wysokocisnieniowe Krysztalozv O Strukturze Type Dlamentu I Ich Structura Atomowa W Swietle Badan Rentgenowskich (ITME, Warsaw, 1984).Google Scholar
99.Kakudate, Y., Yoshida, M., Usuba, S., Yokoi, H., Fujiwara, S., Kawaguchi, M., Sako, K., and Sawai, T., in Proc. 3rd IUMRS Int. Conf. Adv. Mater. (International Union of Materials Research Societies, Tokyo, 1993).Google Scholar
100.Komatsu, T., Kakudate, Y., and Fujiwara, S., J. Chem. Soc., Trans. Faraday Soc. 92 (1996) p. 5067.CrossRefGoogle Scholar
101.Lambrecht, W.R.L. and Segall, B., Phys. Rev. B 47 (1993) p. 9289.CrossRefGoogle Scholar
102.Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S., and Itoh, S., J. Chem. Soc., Trans. Faraday Soc. 55 (1997) p. 10161.Google Scholar
103.Teter, D.M. and Ozolins, V. (unpublished manuscript).Google Scholar
104.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.E., Market, L.C, and Greene, J.E., J. Appl. Phys. 62 (1987) p. 481.CrossRefGoogle Scholar
105.Chu, X. and Barnett, S.A., J. Appl. Phys. 77 (1995) p. 4403.CrossRefGoogle Scholar
106.Sproul, W.D., Science 273 (1996) p. 889.CrossRefGoogle Scholar