Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-30T13:35:34.240Z Has data issue: false hasContentIssue false

DNA origami devices for molecular-scale precision measurements

Published online by Cambridge University Press:  08 December 2017

Carlos E. Castro
Affiliation:
Department of Mechanical and Aerospace Engineering, The Ohio State University, USA; castro.39@osu.edu
Hendrik Dietz
Affiliation:
Technische Universität München, Germany; dietz@tum.de
Björn Högberg
Affiliation:
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden; bjorn.hogberg@ki.se
Get access

Abstract

Structural DNA nanotechnology offers the capacity to construct ultraminiaturized devices with programmed nanoscale geometry, mechanical and dynamic properties, and site-specific molecular functionalities. These features and the possibility to position and orient molecules in user-defined ways may be exploited to create custom instruments for precision measurements of molecular-scale structure, dynamics, and interactions. Such devices may help constrain molecular motion along interesting reaction coordinates and may also exert forces to probe the mechanical properties or dynamics of molecules under study. Multiple ways of reading out device states may be used, including atomic force microscopy or transmission electron microscopy imaging, single-molecule or bulk fluorescence, or ionic conductivity as in nanopore systems. Early successes with custom scientific instruments based on DNA origami underline the tremendous potential to enable new approaches to making scientific discoveries in biological and synthetic materials systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gothelf, K.V., MRS Bull. 42 (12), 897 (2017).Google Scholar
Derr, N.D., Goodman, B.S., Jungmann, R., Leschziner, A.E., Shih, W.M., Reck-Peterson, S.L., Science 338 (6107), 662 (2012).CrossRefGoogle Scholar
Hariadi, R.F., Appukutty, A.J., Sivaramakrishnan, S., ACS Nano 10 (9), 8281 (2016).CrossRefGoogle Scholar
Hariadi, R.F., Sommese, R.F., Sivaramakrishnan, S., Elife 4, e05472 (2015).Google Scholar
Angelin, A., Weigel, S., Garrecht, R., Meyer, R., Bauer, J., Kumar, R.K., Hirtz, M., Niemeyer, C.M., Angew. Chem. Int. Ed. Engl. 54 (52), 15813 (2015).Google Scholar
Pedersen, R.O., Loboa, E.G., LaBean, T.H., Biomacromolecules 14 (12), 4157 (2013).Google Scholar
Shaw, A., Lundin, V., Petrova, E., Fordos, F., Benson, E., Al-Amin, A., Herland, A., Blokzijl, A., Högberg, B., Teixeira, A.I., Nat. Methods 11 (8), 841 (2014).Google Scholar
Stein, I.H., Steinhauer, C., Tinnefeld, P., J. Am. Chem. Soc. 133 (12), 4193 (2011).CrossRefGoogle Scholar
Vogele, K., List, J., Pardatscher, G., Holland, N.B., Simmel, F.C., Pirzer, T., ACS Nano 10 (12), 11377 (2016).Google Scholar
Acuna, G.P., Moller, F.M., Holzmeister, P., Beater, S., Lalkens, B., Tinnefeld, P., Science 338 (6106), 506 (2012).CrossRefGoogle Scholar
Pan, K., Boulais, E., Yang, L., Bathe, M., Nucleic Acids Res. 42 (4), 2159 (2014).Google Scholar
Bell, N.A., Engst, C.R., Ablay, M., Divitini, G., Ducati, C., Liedl, T., Keyser, U.F., Nano Lett. 12 (1), 512 (2012).CrossRefGoogle Scholar
Wei, R., Martin, T.G., Rant, U., Dietz, H., Angew. Chem. Int. Ed. Engl. 51 (20), 4864 (2012).Google Scholar
Langecker, M., Arnaut, V., Martin, T.G., List, J., Renner, S., Mayer, M., Dietz, H., Simmel, F.C., Science 338 (6109), 932 (2012).Google Scholar
Krishnan, S., Ziegler, D., Arnaut, V., Martin, T.G., Kapsner, K., Henneberg, K., Bausch, A.R., Dietz, H., Simmel, F.C., Nat. Commun. 7, 12787 (2016).CrossRefGoogle Scholar
Gopfrich, K., Li, C.Y., Ricci, M., Bhamidimarri, S.P., Yoo, J., Gyenes, B., Ohmann, A., Winterhalter, M., Aksimentiev, A., Keyser, U.F., ACS Nano 10 (9), 8207 (2016).Google Scholar
Shrestha, P., Jonchhe, S., Emura, T., Hidaka, K., Endo, M., Sugiyama, H., Mao, H., Nat. Nanotechnol. 12 (6), 582 (2017).Google Scholar
Liedl, T., Högberg, B., Tytell, J., Ingber, D.E., Shih, W.M., Nat. Nanotechnol. 5, 520 (2010), doi:10.1038/nnano.2010.107.Google Scholar
Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y., Komiyama, M., Nat. Commun. 2, 449 (2011).Google Scholar
Funke, J.J., Ketterer, P., Lieleg, C., Schunter, S., Korber, P., Dietz, H., Sci. Adv. 2 (11), e1600974 (2016).CrossRefGoogle Scholar
Le, J.V., Luo, Y., Darcy, M.A., Lucas, C.R., Goodwin, M.F., Poirier, M.G., Castro, C.E., ACS Nano 10 (7), 7073 (2016).Google Scholar
Funke, J.J., Ketterer, P., Lieleg, C., Korber, P., Dietz, H., Nano Lett. 16 (12), 7891 (2016).Google Scholar
Kilchherr, F., Wachauf, C., Pelz, B., Rief, M., Zacharias, M., Dietz, H., Science 353 (6304), aaf5508 (2016).CrossRefGoogle Scholar
Hudoba, M.W., Luo, Y., Zacharias, A., Poirier, M.G., Castro, C.E., ACS Nano 11 (7), 6566 (2017).Google Scholar
Nickels, P.C., Wunsch, B., Holzmeister, P., Bae, W., Kneer, L.M., Grohmann, D., Tinnefeld, P., Liedl, T., Science 354 (6310), 305 (2016).Google Scholar
Iwaki, M., Wickham, S.F., Ikezaki, K., Yanagida, T., Shih, W.M., Nat. Commun. 7, 13715 (2016).CrossRefGoogle Scholar
Martin, T.G., Bharat, T.A., Joerger, A.C., Bai, X.C., Praetorius, F., Fersht, A.R., Dietz, H., Scheres, S.H., Proc. Natl. Acad. Sci. U.S.A. 113 (47), E7456 (2016).Google Scholar
Suzuki, Y., Endo, M., Katsuda, Y., Ou, K., Hidaka, K., Sugiyama, H., J. Am. Chem. Soc. 136 (1), 211 (2014).CrossRefGoogle Scholar
Sannohe, Y., Endo, M., Katsuda, Y., Hidaka, K., Sugiyama, H., J. Am. Chem. Soc. 132 (46), 16311 (2010).CrossRefGoogle Scholar
Jungmann, R., Avendano, M.S., Dai, M., Woehrstein, J.B., Agasti, S.S., Feiger, Z., Rodal, A., Yin, P., Nat. Methods 13 (5), 439 (2016).Google Scholar
Dai, M., Jungmann, R., Yin, P., Nat. Nanotechnol. 11 (9), 798 (2016).CrossRefGoogle Scholar
Reuss, M., Fördős, F., Blom, H., Öktem, O., Högberg, B., Brismar, H., New J. Phys. 19, 025013 (2017).Google Scholar
Schmied, J.J., Raab, M., Forthmann, C., Pibiri, E., Wunsch, B., Dammeyer, T., Tinnefeld, P., Nat. Protoc. 9 (6), 1367 (2014).Google Scholar
Pfitzner, E., Wachauf, C., Kilchherr, F., Pelz, B., Shih, W.M., Rief, M., Dietz, H., Angew. Chem. Int. Ed. Engl. 52 (30), 7766 (2013).CrossRefGoogle Scholar
Maune, H.T., Han, S.P., Barish, R.D., Bockrath, M., Goddard, W.A. III, Rothemund, P.W., Winfree, E., Nat. Nanotechnol. 5 (1), 61 (2010).Google Scholar
Yang, Y., Wang, J., Shigematsu, H., Xu, W., Shih, W.M., Rothman, J.E., Lin, C., Nat. Chem. 8 (5), 476 (2016).CrossRefGoogle Scholar
Gopinath, A., Miyazono, E., Faraon, A., Rothemund, P.W., Nature 535 (7612), 401 (2016).Google Scholar
Akbari, E., Mollica, M.Y., Lucas, C.R., Bushman, S.M., Patton, R.A., Shahhosseini, M., Song, J.W., Castro, C.E., Adv. Mater. 1703632 (2017), https://doi.org/10.1002/adma.201703632.Google Scholar
Modi, S., Swetha, M.G., Goswami, D., Gupta, G.D., Mayor, S., Krishnan, Y., Nat. Nanotechnol. 4 (5), 325 (2009).Google Scholar
Saha, S., Prakash, V., Halder, S., Chakraborty, K., Krishnan, Y., Nat. Nanotechnol. 10 (7), 645 (2015).CrossRefGoogle Scholar
Chopra, A., Krishnan, S., Simmel, F.C., Nano Lett. 16 (10), 6683 (2016).Google Scholar