Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-09T16:50:29.230Z Has data issue: false hasContentIssue false

DNA-programmable particle superlattices: Assembly, phases, and dynamic control

Published online by Cambridge University Press:  04 May 2016

Oleg Gang
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, USA; ogang@bnl.gov
Alexei V. Tkachenko
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, USA; oleksiyt@bnl.gov
Get access

Abstract

Nanoparticles (NPs) have emerged as new functional blocks for optical, energy, and biomedical applications, opening a new frontier of rational self-assembly of materials. One of the most controllable assembly strategies relies on programming interparticle interactions using the complementarity of DNA strands, providing selective and reversible interactions between particles of different sizes and shapes. Much progress has been achieved in DNA-guided assembly of particle superlattices. By tuning the interactions, sizes, and shapes of NPs, a wide variety of structures have been assembled. This article discusses the most significant achievements and challenges in assembly of DNA-programmable particle superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Klinkova, A., Choueiri, R.M., Kumacheva, E., Chem. Soc. Rev. 43, 3976, doi:10.1039/c3cs60341e (2014).Google Scholar
Wang, J.Y., Song, C., Xu, J.K., Ding, B.Q., Prog. Chem. 24, 1936 (2012).Google Scholar
Rogers, W.B., Shih, W.M., Manoharan, V.N., Nat. Rev. Mater. 1, 16008 (2016), doi:10.1038/natrevmats.2016.8.Google Scholar
Casey, M.T., Scarlett, R.T., Rogers, W.B., Jenkins, I., Sinno, T., Crocker, J.C., Nat. Commun. 3, 1209 (2012), doi:10.1038/ncomms2206.Google Scholar
Wang, Y., Wang, Y., Zheng, X., Ducrot, E., Yodh, J.S., Weck, M., Pine, D.J., Nat. Commun. 6, 7253 (2015).Google Scholar
Lu, F., Yager, K.G., Zhang, Y.G., Xin, H.L., Gang, O., Nat. Commun. 6, 6912 (2015), doi:10.1038/ncomms7912.Google Scholar
Vial, S., Nykypanchuk, D., Yager, K.G., Tkachenko, A.V., Gang, O., ACS Nano 7, 5437 (2013), doi:10.1021/nn401413b.Google Scholar
Alivisatos, A.P., Johnsson, K.P., Peng, X.G., Wilson, T.E., Loweth, C.J., Bruchez, M.P., Schultz, P.G., Nature 382, 609 (1996).Google Scholar
Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature 382, 607 (1996).Google Scholar
Valignat, M.P., Theodoly, O., Crocker, J.C., Russel, W.B., Chaikin, P.M., Proc. Natl. Acad. Sci. U.S.A. 102, 4225 (2005).Google Scholar
Maye, M.M., Nykypanchuk, D., van der Lelie, D., Gang, O., Small 3, 1678 (2007).Google Scholar
Kim, A.J., Biancaniello, P.L., Crocker, J.C., Langmuir 22, 1991 (2006).Google Scholar
Nykypanchuk, D., Maye, M.M., van der Lelie, D., Gang, O., Nature 451, 549 (2008).Google Scholar
Xiong, H.M., van der Lelie, D., Gang, O., J. Am. Chem. Soc. 130, 2442 (2008).Google Scholar
Park, S.Y., Lytton-Jean, A.K.R., Lee, B., Weigand, S., Schatz, G.C., Mirkin, C.A., Nature 451, 553 (2008).Google Scholar
Tkachenko, A.V., Phys. Rev. Lett. 89, 148303 (2002).Google Scholar
Wu, K.T., Feng, L., Sha, R.J., Dreyfus, R., Grosberg, A.Y., Seeman, N.C., Chaikin, P.M., Proc. Natl. Acad. Sci. U.S.A. 109, 18731 (2012).Google Scholar
Xiong, H.M., van der Lelie, D., Gang, O., Phys. Rev. Lett. 102, 015504 (2009).Google Scholar
Angioletti-Uberti, S., Varilly, P., Mognetti, B.M., Tkachenko, A.V., Frenkel, D., J. Chem. Phys. 138, 021102 (2013).Google Scholar
Di Michele, L., Varrato, F., Kotar, J., Nathan, S.H., Foffi, G., Eiser, E., Nat. Commun. 4, 2007 (2013).Google Scholar
Varrato, F., Di Michele, L., Belushkin, M., Dorsaz, N., Nathan, S.H., Eiser, E., Foffi, G., Proc. Natl. Acad. Sci. U.S.A. 109, 19155 (2012).Google Scholar
Biancaniello, P., Kim, A., Crocker, J., Phys. Rev. Lett. 94, 94 (2005).Google Scholar
Licata, N.A., Tkachenko, A.V., Phys. Rev. E 74, 041408 (2006).Google Scholar
Dreyfus, R., Leunissen, M.E., Sha, R.J., Tkachenko, A.V., Seeman, N.C., Pine, D.J., Chaikin, P.M., Phys. Rev. Lett. 102, 048301 (2009).Google Scholar
Dreyfus, R., Leunissen, M.E., Sha, R., Tkachenko, A., Seeman, N.C., Pine, D.J., Chaikin, P.M., Phys. Rev. E 81, 041404 (2010).Google Scholar
Varilly, P., Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D., J. Chem. Phys. 137, 094108 (2012).Google Scholar
Rogers, W.B., Crocker, J.C., Proc. Natl. Acad. Sci. U.S.A. 108, 15687 (2011).CrossRefGoogle Scholar
Macfarlane, R.J., Lee, B., Jones, M.R., Harris, N., Schatz, G.C., Mirkin, C.A., Science 334, 204 (2011).Google Scholar
Srinivasan, B., Vo, T., Zhang, Y.G., Gang, O., Kumar, S., Venkatasubramanian, V., Proc. Natl. Acad. Sci. U.S.A. 110, 18431 (2013).Google Scholar
Vo, T., Venkatasubramanian, V., Kumar, S., Srinivasan, B., Pal, S., Zhang, Y.G., Gang, O., Proc. Natl. Acad. Sci. U.S.A. 112, 4982 (2015).Google Scholar
Mladek, B.M., Fornleitner, J., Martinez-Veracoechea, F.J., Dawid, A., Frenkel, D., Phys. Rev. Lett. 108, 268301 (2012).Google Scholar
Knorowski, C., Burleigh, S., Travesset, A., Phys. Rev. Lett. 106, 215501 (2011).Google Scholar
Li, T.I.N.G., Sknepnek, R., Macfarlane, R.J., Mirkin, C.A., de la Cruz, M.O., Nano Lett. 12, 2509 (2012).Google Scholar
Leunissen, M.E., Frenkel, D., J. Chem. Phys. 134, 084702 (2011).Google Scholar
Martinez-Veracoechea, F.J., Mladek, B.M., Tkachenko, A.V., Frenkel, D., Phys. Rev. Lett. 107, 045902 (2011).Google Scholar
Mladek, B.M., Fornleitner, J., Martinez-Veracoechea, F.J., Dawid, A., Frenkel, D., Soft Matter 9, 7342 (2013).Google Scholar
Leunissen, M.E., Christova, C.G., Hynninen, A.P., Royall, C.P., Campbell, A.I., Imhof, A., Dijkstra, M., van Roij, R., van Blaaderen, A., Nature 437, 235 (2005).Google Scholar
Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B., Nature 439, 55 (2006).CrossRefGoogle Scholar
Macfarlane, R.J., Jones, M.R., Senesi, A.J., Young, K.L., Lee, B., Wu, J.S., Mirkin, C.A., Angew. Chem. Int. Ed. 49, 4589 (2010).Google Scholar
Auyeung, E., Li, T.I.N.G., Senesi, A.J., Schmucker, A.L., Pals, B.C., de la Cruz, M.O., Mirkin, C.A., Nature 505, 73 (2014).Google Scholar
Xiong, H.M., Sfeir, M.Y., Gang, O., Nano Lett. 10, 4456 (2010).Google Scholar
Macfarlane, R.J., Jones, M.R., Lee, B., Auyeung, E., Mirkin, C.A., Science 341, 1222 (2013).Google Scholar
Auyeung, E., Cutler, J.I., Macfarlane, R.J., Jones, M.R., Wu, J.S., Liu, G., Zhang, K., Osberg, K.D., Mirkin, C.A., Nat. Nanotechnol. 7, 24 (2012).Google Scholar
Sun, D.Z., Gang, O., J. Am. Chem. Soc. 133, 5252 (2011).Google Scholar
Zhang, Y.G., Lu, F., Yager, K.G., van der Lelie, D., Gang, O., Nat. Nanotechnol. 8, 865 (2013).Google Scholar
Zhang, C., Macfarlane, R.J., Young, K.L., Choi, C.H.J., Hao, L.L., Auyeung, E., Liu, G.L., Zhou, X.Z., Mirkin, C.A., Nat. Mater. 12, 741 (2013).Google Scholar
Wang, Y.F., Wang, Y., Zheng, X.L., Ducrot, E., Lee, M.G., Yi, G.R., Weck, M., Pine, D.J., J. Am. Chem. Soc. 137, 10760 (2015).Google Scholar
Heuer-Jungemann, A., Kirkwood, R., El-Sagheer, A.H., Brown, T., Kanaras, A.G., Nanoscale 5, 7209 (2013).Google Scholar
Damasceno, P.F., Engel, M., Glotzer, S.C., Science 337, 453 (2012).Google Scholar
Jones, M.R., Macfarlane, R.J., Lee, B., Zhang, J., Young, K.L., Senesi, A.J., Mirkin, C.A., Nat. Mater. 9, 913 (2010).Google Scholar
O’Brien, M.N., Jones, M.R., Lee, B., Mirkin, C.A., Nat. Mater. 14, 833 (2015).Google Scholar
Tian, Y., Wang, T., Liu, W.Y., Xin, H.L., Li, H.L., Ke, Y.G., Shih, W.M., Gang, O., Nat. Nanotechnol. 10, 637 (2015).Google Scholar
Liu, W., Tagawa, M., Xin, H.L., Wang, T., Emamy, H., Li, H., Yager, K.G., Starr, F.W., Tkachenko, A.V., Gang, O., Science 351, 582 (2016).Google Scholar
Tian, Y., Zhang, Y., Wang, T., Xin, H.L., Li, H., Gang, O., Nat. Mater., published online February 22, 2016, http://dx.doi.org/10.1038/nmat4571.Google Scholar
Douglas, S.M., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.M., Nature 459, 414 (2009).Google Scholar
Licata, N.A., Tkachenko, A.V., Phys. Rev. E 79, 011404 (2009).Google Scholar
Li, Y.L., Liu, Z.Y., Yu, G.M., Jiang, W., Mao, C.D., J. Am. Chem. Soc. 137, 4320 (2015).Google Scholar
Srivastava, S., Nykypanchuk, D., Maye, M.M., Tkachenko, A.V., Gang, O., Soft Matter 9, 10452 (2013).Google Scholar
Tan, S.J., Kahn, J.S., Derrien, T.L., Campolongo, M.J., Zhao, M., Smilgies, D.-M., Luo, D., Angew. Chem. Int. Ed. 53, 1316 (2014).Google Scholar
Srivastava, S., Nykypanchuk, D., Fukuto, M., Gang, O., ACS Nano 8, 9857 (2014).Google Scholar
Radha, B., Senesi, A.J., O’Brien, M.N., Wang, M.X., Auyeung, E., Lee, B., Mirkin, C.A., Nano Lett. 14, 2162 (2014).Google Scholar
Srivastava, S., Nykypanchuk, D., Fukuto, M., Halverson, J.D., Tkachenko, A.V., Yager, K.G., Gang, O., J. Am. Chem. Soc. 136, 8323 (2014).Google Scholar
Maye, M.M., Kumara, M.T., Nykypanchuk, D., Sherman, W.B., Gang, O., Nat. Nanotechnol. 5, 116 (2010).Google Scholar
Kim, Y., Macfarlane, R.J., Mirkin, C.A., J. Am. Chem. Soc. 135, 10342 (2013).Google Scholar
Pal, S., Zhang, Y., Kumar, S.K., Gang, O., J. Am. Chem. Soc. 137, 4030 (2015).Google Scholar
Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D., Nat. Mater. 11, 518 (2012).Google Scholar
Rogers, W.B., Manoharan, V.N., Science 347, 639 (2015).Google Scholar
Zhang, Y., Srinivasan, B., Vo, T., Pal, S., Kumar, S., Gang, O., Nat. Mater. 14, 840 (2015).Google Scholar
Kim, Y., Macfarlane, R.J., Jones, M.R., Mirkin, C.A., Science 351, 579 (2016).Google Scholar
Sun, D.Z., Gang, O., Langmuir 29, 7038 (2013).Google Scholar