Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T21:29:46.487Z Has data issue: false hasContentIssue false

Elastic substrates for stretchable devices

Published online by Cambridge University Press:  02 February 2017

Dianpeng Qi
Affiliation:
Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, Singapore; dpqi@ntu.edu.sg
Zhiyuan Liu
Affiliation:
Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, Singapore; LI0037AN@e.ntu.edu.sg
Wan Ru Leow
Affiliation:
Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, Singapore; WLEOW001@e.ntu.edu.sg
Xiaodong Chen
Affiliation:
Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, Singapore; chenxd@ntu.edu.sg
Get access

Abstract

Stretchable devices, with the capability of retaining their functionalities under stretching, are drawing much attention as a promising solution to address the mechanical mismatch between traditional stiff electronics and soft curvilinear biological systems. Intensive efforts have been made toward the advancement of stretchable devices, such as the development of novel mechanically durable materials, deformable conductors and circuits, novel processing methods, and elastic matrixes for stretchable substrates and system integration. Among these, the elastic substrate constitutes the component that bears the applied strain and thus endows the device with stretchability, rendering its properties crucial to the overall performance of stretchable devices. This article provides a summary of the elastic materials commonly employed as stretchable substrates, as well as reveals fundamental insights into the properties requirements in the selection of stretchable substrates. Important challenges and strategies in the development of elastic matrices for stretchable devices are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gao, L., Zhang, Y.H., Malyarchuk, V., Jia, L., Jang, K.I., Webb, R.C., Fu, H.R., Shi, Y., Zhou, G.Y., Shi, L.K., Shah, D., Huang, X., Xu, B.X., Yu, C.J., Huang, Y.G., Rogers, J.A., Nat. Commun. 5, 4938 (2014).CrossRefGoogle Scholar
Qi, D.P., Liu, Z.Y., Yu, M., Liu, Y., Tang, Y.X., Lv, J.H., Li, Y.C., Wei, J., Bo, L., Yu, Z., Chen, X.D., Adv. Mater. 27, 3145 (2015).Google Scholar
Zhu, B.W., Wang, H., Liu, Y.Q., Qi, D.P., Liu, Z.Y., Wang, H., Yu, J.C., Sherburne, M., Wang, Z.H., Chen, X.D., Adv. Mater. 28, 1559 (2016).Google Scholar
Zhu, B.W., Niu, Z.Q., Wang, H., Leow, W.R., Wang, H., Li, Y.G., Zheng, L.Y., Wei, J., Huo, F.W., Chen, X.D., Small 10, 3625 (2014).Google Scholar
Qi, D.P., Liu, Z.Y., Liu, Y., Leow, W.R., Zhu, B.W., Yang, H., Yu, J.C., Wang, W., Wang, H., Yin, S.Y., Chen, X.D., Adv. Mater. 27, 5559 (2015).CrossRefGoogle Scholar
Liu, Z.Y., Qi, D.P., Guo, P.Z., Liu, Y., Zhu, B.W., Yang, H., Liu, Y.Q., Li, B., Zhang, C.G., Yu, J.C., Liedberg, B., Chen, X.D., Adv. Mater. 27, 6230 (2015).Google Scholar
Lipomi, D.J., Adv. Mater. 28, 4180 (2016).CrossRefGoogle Scholar
Lipomi, D.J., Vosgueritchian, M., Tee, B.C.-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z., Nat. Nanotechnol. 6, 788 (2011).Google Scholar
Mannsfeld, S.C.B., Tee, B.C.-K., Stoltenberg, R.M., Chen, C.V.H.-H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z., Nat. Mater. 9, 859 (2010).Google Scholar
Chortos, A., Liu, J., Bao, Z., Nat. Mater. 15, 937 (2016).Google Scholar
McCoul, D., Hu, W.L., Gao, M.M., Mehta, V., Pei, Q.B., Adv. Electron. Mater. 2, 1500407 (2016).Google Scholar
Yao, S.S., Zhu, Y., Adv. Mater. 27, 1480 (2015).Google Scholar
Cheng, T., Zhang, Y.Z., Lai, W.Y., Huang, W., Adv. Mater. 27, 3349 (2015).CrossRefGoogle Scholar
Xu, F., Zhu, Y., Adv. Mater. 24, 5117 (2012).Google Scholar
Park, M., Im, J., Shin, M., Min, Y., Park, J., Cho, H., Park, S., Shim, M.B., Jeon, S., Chung, D.Y., Bae, J., Park, J., Jeong, U., Kim, K., Nat. Nanotechnol. 7, 803 (2012).Google Scholar
Wang, Y., Yang, R., Shi, Z.W., Zhang, L.C., Shi, D.X., Wang, E., Zhang, G.Y., ACS Nano 5, 3645 (2011).Google Scholar
Lacour, S.P., Jones, J., Suo, Z., Wagner, S., IEEE Electron Device Lett. 25, 179 (2004).Google Scholar
Sun, Y.G., Choi, W.M., Jiang, H.Q., Huang, Y.G.Y., Rogers, J.A., Nat. Nanotechnol. 1, 201 (2006).CrossRefGoogle Scholar
Gonzalez, M., Axisa, F., Bulcke, M.V., Brosteaux, D., Vandevelde, B., Vanfleteren, J., Microelectron. Reliab. 48, 825 (2008).Google Scholar
Liu, Z.Y., Yu, M., Lv, J.H., Li, Y.C., Yu, Z., ACS Appl. Mater. Interfaces 6, 13487 (2014).Google Scholar
Tang, J.D., Li, J.Y., Vlassak, J.J., Suo, Z.G., Soft Matter 12, 1093 (2016).Google Scholar
Hu, X.L., Krull, P., de Graff, B., Dowling, K., Rogers, J.A., Arora, W.J., Adv. Mater. 23, 2933 (2011).Google Scholar
Wang, J.X., Yan, C.Y., Cai, G.F., Cui, M.Q., Eh, A.L.S., Lee, P.S., Adv. Mater. 28, 4490 (2016).Google Scholar
Hu, L.B., Yuan, W., Brochu, P., Gruner, G., Pei, Q.B., Appl. Phys. Lett. 94, 161108 (2009).Google Scholar
Zhu, S., So, J.H., Mays, R., Desai, S., Barnes, W.R., Pourdeyhimi, B., Dickey, M.D., Adv. Funct. Mater. 23, 2308 (2013).Google Scholar
Urdaneta, M.G., Delille, R., Smela, E., Adv. Mater. 19, 2629 (2007).Google Scholar
Hu, W., Niu, X., Li, L., Yun, S., Yu, Z., Pei, Q., Nanotechnology 23, 344002 (2012).Google Scholar