Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T18:53:43.871Z Has data issue: false hasContentIssue false

Evolution and Future Trends of SIMOX Material

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Oxygen-implanted silicon-on-insulator (SOI) material, or SIMOX (separation by implantation of oxygen), is another chapter in the continuing development of new material technologies for use by the semiconductor industry. Building integrated circuits (ICs) in a thin layer of crystalline silicon on a layer of silicon oxide on a silicon substrate has benefits for radiationhard, high-temperature, high-speed, low-voltage, and low-power operation, and for future device designs. Historically the first interest in SIMOX was for radiation-hard electronics for space, but the major application of interest currently is low-power, high-speed, portable electronics. Silicon-on-insulator also avoids the disadvantage of a completely different substrate such as sapphire or gallium arsenide. Formation of a buried-oxide (BOX) layer by high-energy, high-dose, oxygen ion implantation has the advantage that the ion-implant dose can be made extremely precise and extremely uniform. However the silicon and oxide layers are highly damaged after the implant, so high-temperature annealing sequences are required to restore devicequality material. In fact SIMOX process development necessitated the development of new technologies for high-dose implantation and high-temperature annealing.

Type
Siucon-on-Insulator Technology
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Colinge, J-P., Silicon-on-Insulator Technology: Materials to VLSI (Kluwer Academic Publishers, Boston, Dordrecht, London, 1991).CrossRefGoogle Scholar
2.Watanabe, M. and Tooi, A., Jpn. J. Appl. Phys. 5 (1966) p. 737.CrossRefGoogle Scholar
3.Izumi, K., Dokin, M., and Ariyoshi, H., Electron. Lett. 14 (18) (1978) p. 593.CrossRefGoogle Scholar
4.Hemment, P.L.F., Maydell-Ondrusz, E., Stephens, K.G., Butcher, J., Ioannou, D., and Alderman, J., Nucl. Iustrum. Methods 209/210 (1983) p. 157.CrossRefGoogle Scholar
5.Guerra, M., Benveniste, V., Ryding, G., Douglas-Hamilton, D.H., Reed, M., Gagne, G., Armstrong, A., and Mack, M., Nucl. Instrum. Methods Phys. Res. B 6 (1985) p. 63.CrossRefGoogle Scholar
6.Celler, G.K., Hemment, P.L.F., West, K.W., and Gibson, J.M., Appl. Phys. Lett. 48 (1986) p. 532.CrossRefGoogle Scholar
7.Visitserngtrakul, S., Krause, S.J., Roitman, P., Simons, D.S., and Cordts, B.F., Appl. Phys. Lett. 59 (1991) p. 3003.Google Scholar
8.Allen, L.P., Anc, M.J., Duffy, M., Parechanian, J.H., and Yap, J.H., in Proc. Electrochem. Soc., vol. 96-3 (1996) p. 18.Google Scholar
9.Roitman, P., Edelstein, M., Visitserngtrakul, S., and Krause, S.J., in Proc. IEEE SOS/SOI Technology Conf. (Key West, FL, 1990) p. 154.Google Scholar
10.Anc, M.J. and Krull, W.A., in Proc. IEEE Int. SOI Conf. (Nantucket, MA, 1994) p. 79.CrossRefGoogle Scholar
11.Venables, D. and Jones, K.S., Nucl. Instrum. Methods Phys. Res. B 74 (1993) p. 65.CrossRefGoogle Scholar
12.Lee, J.D., Park, J.C., Venables, D., Krause, S.J., and Roitman, P. in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R.J., Holland, O.W., Jones, K.S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, 1994) p. 753.Google Scholar
13.Lee, J.D., Park, J.C., Venables, D., Krause, S.J., and Roitman, P., Appl. Phys. Lett. 6 (1993) p. 3330.CrossRefGoogle Scholar
14.Ryding, G., Smick, T.H., Farley, M., Cordts, B.F., Dolan, R.P., Allen, L.P., Mathews, B., Wray, W., Amundsen, B., and Anc, M.J., in Proc. 11th Int. Conf. on Ion Implantation Technology (Austin, TX, 1996) p. 35.Google Scholar
15.Tokiguchi, K., Yamashita, Y., Seki, T., and Hashimoto, I., in Proc. Electrochem. Soc., vol. 96–3 (1996) p. 28.Google Scholar
16.Nakashima, S. and Izumi, K., J. Mater. Res. 8 (1993) p. 523.CrossRefGoogle Scholar
17.Bagchi, S., Lee, J.D., Krause, S.J., and Roitman, P., J. Electron. Mater. 22 (1996) p. 7.CrossRefGoogle Scholar
18.Bagchi, S., Krause, S.J., and Roitman, P., Appl. Phys. Lett. 71 (1997) p. 2136.CrossRefGoogle Scholar
19.Nakashima, S., Katayama, T., Miyamura, Y., Matsuzaki, A., Kataoka, M., Ebi, D., Irriai, M., Izumi, K., and Ohwada, N., J. Electrochem. Soc. 143 (1) (1996) p. 244.CrossRefGoogle Scholar
20.Mrstik, B.J., McMarr, P.J., Hughes, H.L., Anc, M.J., and Krull, W.A., Appl. Phys. Lett. 67 (22) (1995) p. 3283.CrossRefGoogle Scholar
21.Alles, M.L., in Proc. IEEE Int. SOI Conf. (Yosemite, CA, 1997) p. 128.Google Scholar
22.Anc, M.J., Farley, M., Jiao, J., Seraphin, S., Kirchoff, J., McMarr, P.J., and Hughes, H.L., in Proc. IEEE Int. SOI Conf. (1998).Google Scholar
23.Ogura, A., J. Electrochem. Soc. 145 (5) (1998) p. 1735.CrossRefGoogle Scholar
24.Meyappan, N., Nakato, T., and Takeuchi, H., in Proc. IEEE Int. SOI Conf. (Tucson, AZ, 1995) p. 164.Google Scholar
25.Holland, O.W., Fathy, D., and Sadana, D.K., Appl. Phys. Lett. 69 (1996) p. 674.CrossRefGoogle Scholar