Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T03:37:46.908Z Has data issue: false hasContentIssue false

In pursuit of damage tolerance in engineering and biological materials

Published online by Cambridge University Press:  15 October 2014

Robert O. Ritchie*
Affiliation:
Department of Materials Science and Engineering, University of California, Berkeley, USA; roritchie@lbl.gov
Get access

Abstract

The ability to image and quantify material behavior in real time at nano to near-macro length scales, preferably in three dimensions, is a crucial feature of modern materials science. Here, we examine such an approach to characterize the mechanical properties of three diverse classes of materials: (1) biological materials, principally bone, using both in situ small-/wide-angle x-ray scattering/diffraction to probe nanoscale deformation behavior and x-ray computed microtomography to study microscale damage mechanisms; (2) biomimetic materials, specifically a nacre-like ceramic, where microtomography is used to identify toughening mechanisms; (3) synthetic materials, specifically ceramic textile composites, using in situ microtomography to quantify the salient mechanical damage at ultrahigh temperatures. The mechanistic insights for the understanding of damage evolution and fracture afforded by these techniques are undeniable; as such, they can help provide a basis for the achievement of enhanced damage tolerance in structural materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weiner, S., Wagner, H.D., Annu. Rev. Mater. Res. 28, 271 (1998).Google Scholar
Launey, M.E., Buehler, M.J., Ritchie, R.O., Annu. Rev. Mater. Res. 40, 25 (2010).CrossRefGoogle Scholar
Nalla, R.K., Kinney, J.H., Ritchie, R.O., Nat. Mater. 2, 164 (2003).CrossRefGoogle Scholar
Ritchie, R.O., Nat. Mater. 10, 817 (2011).CrossRefGoogle Scholar
Gupta, H.S., Seto, J., Wagermeier, W., Zaslansky, P., Boesecke, P., Fratzl, P., Proc. Natl. Acad. Sci. U.S.A. 103, 17741 (2006).CrossRefGoogle Scholar
Haboub, A., Bale, H.A., Nasiatka, J.R., Cox, B.N., Marshall, D.B., Ritchie, R.O., MacDowell, A.A., Rev. Sci. Instrum. 85, 83702 (2014).CrossRefGoogle Scholar
Zimmermann, E.A., Schaible, E., Bale, H., Barth, H.D., Tang, S.Y., Reichert, P., Busse, B., Alliston, T., Ager, J.W., Ritchie, R.O., Proc. Natl. Acad. Sci. U.S.A. 108, 14416 (2011).CrossRefGoogle Scholar
Barth, H.D., Zimmermann, E.A., Schaible, E., Tang, S.Y., Alliston, T., Ritchie, R.O., Biomaterials 32, 8892 (2011).CrossRefGoogle Scholar
Groso, A., Abela, R., Stampanoni, M., Opt. Express 14, 8103 (2006).CrossRefGoogle Scholar
Koester, K.J., Ager, J.W., Ritchie, R.O., Nat. Mater. 7, 672 (2008).CrossRefGoogle Scholar
Nalla, R.K., Kruzic, J.J., Kinney, J.H., Balooch, M., Ager, J.W., Ritchie, R.O., Mater. Sci. Eng. C 26, 1251 (2006).CrossRefGoogle Scholar
Anderson, T.L., Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, FL, 2005).CrossRefGoogle Scholar
Cummings, S.R., Browner, W., Black, D.R., Nevitt, M.C, Genant, H.K., Cauley, J., Ensrud, K., Scott, J., Vogt, T.M., Lancet 341, 72 (1993).CrossRefGoogle Scholar
Hui, S.L., Slemenda, C.W., Johnston, C.C., J. Clin. Invest. 81, 1804 (1988).CrossRefGoogle Scholar
Zioupos, P., Currey, J.D., Bone 22, 57 (1998).CrossRefGoogle ScholarPubMed
McCalden, R.W., McGeough, J.A., Barker, M.B., Courtbrown, C.M., J. Bone Joint Surg. Am. 75A, 1193 (1993).CrossRefGoogle Scholar
Sell, D.R., Monnier, V.M., J. Biol. Chem. 264, 21597 (1989).CrossRefGoogle Scholar
Bailey, A.J., Mech. Ageing Dev. 122, 735 (2001).CrossRefGoogle Scholar
Vashishth, D., Gibson, G.J., Khoury, J.I., Schaffler, M.B., Kimura, J., Fyhrie, D.P., Bone 28, 195 (2001).CrossRefGoogle ScholarPubMed
Busse, B., Hahn, M., Schinke, T., Püschel, K., Duda, G.N., Amling, M., J. Biomed. Mater. Res. A 92A, 1440 (2010).CrossRefGoogle Scholar
Carriero, A., Zimmermann, E.A., Paluszny, A., Tang, S.Y., Bale, H., Busse, B., Alliston, T., Kazakia, G., Ritchie, R.O., Shefelbine, S.J., J. Bone Miner. Res. 29, 1392 (2014).CrossRefGoogle Scholar
Forlino, A., Cabral, W.A., Barnes, A.M., Marini, J.C., Nat. Rev. Endocrinol. 7, 540 (2011).CrossRefGoogle Scholar
Cole, W.G., Clin. Orthop. Relat. Res. 401, 6 (2002).CrossRefGoogle Scholar
Rauch, F., Glorieux, F.H., Lancet 363, 1377 (2004).CrossRefGoogle Scholar
Traub, W., Arad, T., Vetter, U., Weiner, S., Matrix Biol. 14, 337 (1994).CrossRefGoogle Scholar
Bargman, R., Huang, A., Boskey, A.L., Raggio, C., Pleshko, N., Connect. Tissue Res. 51, 123 (2010).CrossRefGoogle Scholar
Nicholls, A.C., Osse, G., Schloon, H.G., Lenard, H.G., Deak, S., Myers, J.C., Prockop, D.J., Weigel, W.R.F., Fyrer, P., Pope, F.M., J. Med. Genet. 21, 257 (1984).CrossRefGoogle Scholar
Vanleene, M., Shefelbine, S.J., Bone 53, 507 (2013).CrossRefGoogle ScholarPubMed
Saban, J., Zussman, M.A., Havey, R., Patwardhan, A.G., Schneider, G.B., King, D., Bone 19, 575 (1996).CrossRefGoogle Scholar
Busse, B., Bale, H.A., Zimmermann, E.A., Panganiban, B., Barth, H.D., Carriero, A., Vettorazzi, E., Zustin, J., Hahn, M., Ager, J.W., Püschel, K., Amling, M., Ritchie, R.O., Sci. Transl. Med. 5, 193ra88 (2013).CrossRefGoogle Scholar
Ettinger, B., Burr, D.B., Ritchie, R.O., Bone 55, 495 (2013).CrossRefGoogle Scholar
Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y., Prog. Mater. Sci. 53, 1 (2008).CrossRefGoogle Scholar
Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.M., Espinosa, H.D., J. Mech. Phys. Solids 55, 306 (2007).CrossRefGoogle Scholar
Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., Aksay, I.A., J. Mater. Res. 16, 2485 (2001).CrossRefGoogle Scholar
Shao, Y., Zhao, H.-P., Feng, X.-Q., Gao, H., J. Mech. Phys. Solids 60, 1400 (2012).CrossRefGoogle Scholar
Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Science 322, 1516 (2008).CrossRefGoogle Scholar
Deville, S., Saiz, E., Nalla, R.K., Tomsia, A.P., Science 311, 515 (2006).CrossRefGoogle Scholar
Bale, H.A., Haboub, A., MacDowell, A.A., Nasiatka, J.R., Parkinson, D.L., Cox, B.N., Marshall, D.B., Ritchie, R.O., Nat. Mater. 12, 40 (2013).CrossRefGoogle Scholar
Dimiduk, D.M., Perepezko, J.H., MRS Bull. 28, 639 (2003).CrossRefGoogle Scholar
Marshall, D.B., Cox, B.N., Annu. Rev. Mater. Res. 38, 425 (2008).CrossRefGoogle Scholar
Morscher, G.N., Yun, H.M., DiCarlo, J.A., J. Am. Ceram. Soc. 88, 146 (2005).CrossRefGoogle Scholar
Nakano, K., Kamiya, A., Nishino, Y., Imura, T., Chou, T.W., J. Am. Ceram. Soc. 78, 2811 (1995).CrossRefGoogle Scholar
Schmidt, S., Beyer, S., Immich, H., Knabe, H., Meistring, R., Gessler, A., Int. J. Appl. Ceram. Technol. 2, 85 (2005).CrossRefGoogle Scholar
Marshall, D.B., Evans, A.G., J. Am. Ceram. Soc. 68, 225 (1985).CrossRefGoogle Scholar
Cox, B.N., Bale, H.A., Begley, M., Blacklock, M., Do, B.-C., Fast, T., Naderi, M., Novak, M., Rajan, V.P., Rinaldi, R.G., Ritchie, R.O., Rossol, M.N., Shaw, J.H., Sudre, O., Yang, Q.D., Zok, F.W., Marshall, D.B., Annu. Rev. Mater. Res. 44, 479 (2014).CrossRefGoogle Scholar
Budiansky, B., Evans, A.G., Hutchinson, J.W., Int. J. Solids Struct. 32, 315 (1995).CrossRefGoogle Scholar
Okabe, T., Nishikawa, M., Curtin, W.A., Compos. Sci. Technol. 68, 3067 (2008).CrossRefGoogle Scholar