Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-08-01T10:22:44.492Z Has data issue: false hasContentIssue false

Long Fatigue Cracks — Microstructural Effects and Crack Closure

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Fracture mechanics technology is an effective tool for characterizing the rates of fatigue crack propagation. Generally, fatigue crack growth rate (da/dN) in each loading cycle can be presented as a function of stress intensity range (ΔK), where ΔK = KmaxKmin, Kmax and Kmin are the maximum and the minimum stress intensities, respectively. A typical fatigue crack growth rate curve of da/dN versus ΔK can be divided into three regimes, i.e., Stage I (near-threshold), Stage II (Paris), and Stage III (fast) crack growth regions, as shown in Figure 1.

Depending on the region of crack growth, fatigue crack growth behavior can be sensitive to microstructure, environment, and loading conditions [e.g., R (load) ratio = Kmin / Kmax]. In the nearthreshold region, fatigue crack growth rates are very slow, ranging from approximately 10−10 to 10−8 m/cycle. In this region, the fatigue crack growth rate curve eventually reaches a threshold stress intensity range, ΔKth, below which the crack would not grow or grow at an extremely slow rate. Typically, the value of ΔKth is operationally defined as the stress intensity range which gives a corresponding crack growth rate of 10−10 m/cycle. In the nearthreshold region, the influence of microstructure, environment, and load ratio on the rates of crack propagation is very significant.

Type
Crack Formation and Propagation
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Paris, P.C., Bucci, R.J., Wessel, E.T., Clark, W.G. Jr., and Mager, T.R., ASTM STP 513 (1972) p. 141.Google Scholar
2.Schmidt, R.A. and Paris, P.C., ASTM STP 536 (1973) p. 79.Google Scholar
3.Bucci, R.J., Clark, W.G. Jr., and Paris, P.C., ASTM STP 513 (1972) p. 177.Google Scholar
4.Bucci, R.J., Paris, P.C., Hertzberg, R.W., Schmidt, R.A., and Anderson, A.F., ASTM STP 513 (1972) p. 125.Google Scholar
5.Irving, P.E. and Beevers, C.J., Met. Trans. 5A (1974) p. 391.CrossRefGoogle Scholar
6.Cooke, R.J. and Beevers, C.J., Mater. Sci. Eng. 13 (1974) p. 201.CrossRefGoogle Scholar
7.Ritchie, R.O., Int. Metal. Rev. 5 & 6 (1979) p. 205.Google Scholar
8.Suresh, S. and Ritchie, R.O., in Fatigue Crack Growth Threshold Concepts, edited by Davidson, D.L. and Suresh, S., (TMS-AIME, Warrendale, PA, 1984) p. 227.Google Scholar
9.Suresh, S., Zamiski, G.F., and Ritchie, R.O., Met. Trans. 12A (1981) p. 1435.CrossRefGoogle Scholar
10.Tzou, T.L., Hsueh, C.H., Evans, A.G., and Ritchie, R.O., Acta Metall. 33 (1985) p. 117.CrossRefGoogle Scholar
11.Dutta, V.B., Suresh, S., and Ritchie, R.O., Met. Trans. 15A (1984) p. 1193.CrossRefGoogle Scholar
12.Suresh, S., Met. Trans. 14A (1983) p. 2375.CrossRefGoogle Scholar
13.Minakawa, K., Matsuo, Y., and McEvily, A.J., Met. Trans. 13A (1982) p. 439.CrossRefGoogle Scholar
14.Suzuki, H. and McEvily, A.J., Met. Trans. 10A (1979) p. 475.CrossRefGoogle Scholar
15.Minakawa, K. and McEvily, A.J., Scripta Metall. 15 (1981) p. 633.CrossRefGoogle Scholar
16.Benoit, D., Namdar-Trixier, R., and Tixier, R., Mater. Sci. Eng. 45 (1980) p. 1.CrossRefGoogle Scholar
17.Stewart, A.T., Eng. Fracture Mech. 13 (1980) p. 463.CrossRefGoogle Scholar
18.Endo, K., Komai, K., and Matsuda, Y., Memo Faculty Eng. 31 (Kyoto University, 1969) p. 25.Google Scholar
19.Endo, K., Okada, T., and Hariya, T., Bull. JSME 15 (1972) p. 439.CrossRefGoogle Scholar
20.McKittrick, J., Liaw, P.K., Kwun, S.I., and Fine, M.E., Met. Trans. 12A (1981) p. 1535.CrossRefGoogle Scholar
21.Horng, J.L. and Fine, M.E., Mater. Sci. Eng. 67 (1984) p. 185.CrossRefGoogle Scholar
22.Park, D.H. and Fine, M.E., in Fatigue Crack Growth Threshold Concepts, edited by Davidson, D.L. and Suresh, S. (TMS-AIME, Warrendale, PA, 1984) p. 145.Google Scholar
23.Suresh, S., Vasudevan, A.K., and Bretz, P.E., Met. Trans. 15A (1984) p. 369.CrossRefGoogle Scholar
24.Ritchie, R.O., Suresh, S., and Liaw, P.K., in Ultrasonic Fatigue, edited by Wells, J.M.et al. (TMS-AIME, Warrendale, PA, 1982) p. 443.Google Scholar
25.Gray, G.T., Williams, J.C., and Thompson, A.W., Met. Trans. 14A (1983) p. 421.CrossRefGoogle Scholar
26.Saxena, A., Hudak, S.J. Jr., Donald, J.K., and Schmidt, D.W., J. Testing and Evaluation 6 (1978) p. 167.Google Scholar
27.Esaklul, E.A., Wright, A.G., and Gerberich, W.W., Scripta Met. 17 (1983) p. 1073.CrossRefGoogle Scholar
28.Gerberich, W.W., Yu, W., and Esaklul, E.A., Met. Trans. 15A (1984) p. 875.CrossRefGoogle Scholar
29.Yu, W., Esaklul, E.A., and Gerberich, W.W., Met. Trans. 15A (1984) p. 889.CrossRefGoogle Scholar
30.Davidson, D.L., Fatigue of Engineering Materials and Structures 3 (1980) p. 229.CrossRefGoogle Scholar
31.Davidson, D.L. and Lankford, J., Mater. Sci. Eng. 60 (1983) p. 225.CrossRefGoogle Scholar
32.Lankford, J. and Davidson, D.L., in Fatigue Crack Growth Threshold Concepts, edited by Davidson, D.L. and Suresh, S. (TMS-AIME, Warrendale, PA, 1984) p. 447.Google Scholar
33.Lankford, J., Davidson, D.L., and Chan, K.S., Met. Trans. 15A (1984) p. B 1579.CrossRefGoogle Scholar
34.Allison, J.E., PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1982.Google Scholar
35.Yuen, J.L., Roy, P., and Nix, W.D., Met. Trans. 15A (1984) p. 1769.CrossRefGoogle Scholar
36.Carter, R.D., Lee, E.W., Starke, E.A., and Beevers, C.J., Met. Trans. 15A (1984) p. 555.CrossRefGoogle Scholar
37.Liaw, P.K., Leax, T.R., Williams, R.S., and Peck, M.G., Met. Trans. 13A (1982) p. 1607.CrossRefGoogle Scholar
38.Logsdon, W.A. and Liaw, P.K., Eng. Fracture Mech. 24 (1986) p. 737.CrossRefGoogle Scholar
39.Liaw, P.K., Logsdon, W.A., and Burke, M.A., “Fatigue Crack Propagation Behavior of 63Sn-37Pb Solder,” Scripta Metall. 23 (1989) p. 747.CrossRefGoogle Scholar
40.Logsdon, W.A., Liaw, P.K., and Burke, M.A., “Fracture Behavior of 63Sn-37Pb Solder,” Eng. Fracture Mech. (in press).Google Scholar
41.Liaw, P.K., Anello, J., and Donald, J.K., Met. Trans. 13A (1982) p. 2177.CrossRefGoogle Scholar
42.Liaw, P.K., Hudak, S.J. Jr., and Donald, J.K., Met. Trans. 13A (1982) p. 1633.CrossRefGoogle Scholar
43.Liaw, P.K., Leax, T.R., Williams, R.S., and Peck, M.G., Acta Metall. 30 (1982) p. 2071.CrossRefGoogle Scholar
44.Liaw, P.K., Swaminathan, V.P., Leax, T.R., and Donald, J.K., Scripta Met. 16 (1982) p. 871.CrossRefGoogle Scholar
45.Liaw, P.K., Anello, J., and Donald, J.K., Scripta Met. 16 (1982) p.39.CrossRefGoogle Scholar
46.Liaw, P.K., Logsdon, W.A., and Attaar, M.H., in Proc. International Cryogenic Materials Conference (Kobe, Japan, May 1982) p. 138.Google Scholar
47.Liaw, P.K., Logsdon, W.A., and Attaar, M.H., Cryogenics (Oct. 1983) p. 523.Google Scholar
48.Liaw, P.K., Saxena, A., Swaminathan, V.P., and Shih, T.T., Met. Trans. 14A (1983) p. 1631.CrossRefGoogle Scholar
49.Liaw, P.K., Logsdon, W.A., and Attaar, M.H., in Austenitic Steels at Low Temperatures, edited by Reed, R.P. and Horiuchi, T. (Plenum Press, New York and London, 1983) p. 171.CrossRefGoogle Scholar
50.Liaw, P.K., Hudak, S.J. Jr., and Donald, J.K., ASTM STP 791 II (1983) p. 370.Google Scholar
51.Williams, R.S., Liaw, P.K., Peck, M.G., and Leax, T.R., Eng. Fracture Mech. 18 (1983) p. 953.CrossRefGoogle Scholar
52.Liaw, P.K., Leax, T.R., and Logsdon, W.A., Acta Metall. 31 (1983) p. 1581.CrossRefGoogle Scholar
53.Liaw, P.K., Saxena, A., Swaminathan, V.P., and Shih, T.T., in Fatigue Crack Growth Threshold Concepts, edited by Davidson, D.L. and Suresh, S. (TMS-AIME, Warrendale, PA, 1983) p. 205.Google Scholar
54.Liaw, P.K., Anello, J., and Donald, J.K., Eng. Fracture Mech. 19 (1984) p. 1047.CrossRefGoogle Scholar
55.Liaw, P.K., Ho, T.L., and Donald, J.K., Scripta Met. 18 (1984) p. 821.CrossRefGoogle Scholar
>56.Liaw, P.K., in Synergism of Microstructure, Mechanisms and Mechanics in Fatigue, edited by Wells, J.M. and Landes, J.D. (TMS-AIME, Warrendale, PA, 1984) p. 479.Google Scholar
57.Liaw, P.K., Anello, J., Cheruvu, N.S., and Donald, J.K., Met. Trans. 15A (1984) p. 693.CrossRefGoogle Scholar
58.Liaw, P.K. and Logsdon, W.A., J. Eng. Mater, and Tech. 107 (1985) p. 26.CrossRefGoogle Scholar
59.Liaw, P.K., Logsdon, W.A., and Attaar, M.H., ASTM STP 857 (1985) p. 173.Google Scholar
60.Liaw, P.K. and Logsdon, W.A., Eng. Fracture Mech. 22 (1985) p. 115.CrossRefGoogle Scholar
61.Liaw, P.K. and Logsdon, W.A., Eng. Fracture Mech. 22 (1985) p. 585.CrossRefGoogle Scholar
62.Liaw, P.K., Acta Metall. 33 (1985) p. 1489.CrossRefGoogle Scholar
63.Liaw, P.K., Leax, T.R., and Donald, J.K., Acta Metall. 35 (1987) p. 1415.CrossRefGoogle Scholar
64.Liaw, P.K., ASTM STP 982 (1988) p. 62.Google Scholar
65.Liaw, P.K., Leax, T.R., and Donald, J.K., “Gaseous-Environment Fatigue Crack Propagation Behavior of a Low Alloy Steel,” in 20th ASTM National Symposium on Fracture Mechanics, ASTM STP 1020 (1989) p. 581.Google Scholar
66.Liaw, P.K. and Logsdon, W., Acta Metall. 36 (1988) p. 1731.CrossRefGoogle Scholar
67.Liaw, P.K. and Logsdon, W.A., in Fatigue 87 II, edited by Ritchie, R.O. and Starke, E.A. Jr., (Engineering Materials Advisory Services, Cradley Heath, Warley, West Midlands, U.K., 1987) p. 899.Google Scholar
68.Suresh, S. and Ritchie, R.O., Met. Trans. 13A (1982) p. 1627.CrossRefGoogle Scholar
69.Elber, W., PhD thesis, University of New South Wales, 1968.Google Scholar
70.Budiansky, B. and Hutchinson, J.W., J. Applied Mech. 45 (1978) p. 267.CrossRefGoogle Scholar
71.Newman, J.C. Jr., ASTM STP 590 (1976) p. 281.Google Scholar
72.Rack, H. and Ratnaparkhi, P., J. Metals (November 1988) p. 55.Google Scholar
73.Shang, J.K., Yu, W., and Ritchie, R.O., Mater. Sci. Eng. 102 (1988) p. 181.CrossRefGoogle Scholar
74.Davidson, D.L., Met. Trans. 18A (1987) p. 2115.CrossRefGoogle Scholar
75.Christman, T. and Suresh, S., Mater. Sci. Eng. 102 (1988) p. 211.CrossRefGoogle Scholar
76.Shang, J.K. and Ritchie, R.O., “On the Particle-Size Dependence of Fatigue-Crack Propagation Thresholds in SiC-Particulate-Reinforced Aluminum-Alloy Composites: Role of Crack Closure and Crack Trapping,” Acta Metall,(in press).Google Scholar
77.You, C.P., Lasecki, J.V., Boileau, J.M., and Allison, J.E., “Aging Effects on Fatigue Crack Growth and Closure in SiC-Reinforced 2124 Aluminum Composite,” (presented at the TMS Fall Meeting, Chicago, IL, 1988).Google Scholar
78.Yokobori, A.T. Jr. and Yokobori, T., Proc. Int. Conf. Fatigue Thresholds 1 (1981) p. 171.Google Scholar
79.Pook, L.P. and Frost, N.E., Int. J. Fracture 9 (1973) p. 53.CrossRefGoogle Scholar
80.Weiss, V. and Lai, D.N., Met. Trans. 5A (1974) p. 1946.CrossRefGoogle Scholar
81.Phillips, E., “Formation of a Study Group on Crack Closure Measurements and Analysis,” ASTM Letter (188E) 3 (December 1984).Google Scholar
82.Shih, T.T. and Wei, R.P., Eng. Fracture Mech. 6 (1974) p. 19.CrossRefGoogle Scholar
83.Dan, D. and Weertman, J., Eng. Fracture Mech. 15 (1981) p. 87.Google Scholar
84.Lee, J.J. and Sharpe, W.N. Jr., ASTM STP 982 (1988) p. 270.Google Scholar
85.Jira, J.R., Weerasooriya, T., Nicholas, T., and Larsen, J.M., ASTM STP 982 (1988) p. 617.Google Scholar
86.Larsen, J.M., Nicholas, T., Thompson, A.W., and Williams, J.C., in Small Fatigue Cracks, edited by Ritchie, R.O. and Lankford, J. (TMS-AIME, Warrendale, PA, 1986) p. 499.Google Scholar
87.McClung, R.C. and Sehitoglu, H., ASTM STP 982 (1988) p. 279.Google Scholar
88.Hudak, S.J. Jr. and Davidson, D.L., ASTM STP 982 (1988) p. 121.Google Scholar
89.Troha, W.A., Nicholas, T., and Grandt, A.F. Jr., ASTM STP 982 (1988) p. 598.Google Scholar
90.Lalor, P.L. and Sehitoglu, H., ASTM STP 982 (1988) p. 342.Google Scholar
91.Chermahini, R.G., Shivakumar, K.N., and Newman, J.C. Jr., ASTM STP 982 (1988) p. 398.Google Scholar
92.Nakamura, H. and Kobayashi, A., ASTM STP 982 (1988) p. 459.Google Scholar
93.Fleck, N.A. and Newman, J.C. Jr., ASTM STP 982 (1988) p. 319.Google Scholar
94.Nicholas, T., Palazotto, A.N., and Bednarz, E., ASTM STP 982 (1988) p. 361.Google Scholar
95.Tracey, D.M., J. Eng. Mater. Tech., Trans. ASME 98 (1976) p. 146.CrossRefGoogle Scholar