Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-07T11:44:31.895Z Has data issue: false hasContentIssue false

Metastable Phase Formation in Thin Films and Multilayers

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

It is well known that thin-film technology relies increasingly on multilayered structures. As dimensions become smaller, the interfacial or contact region assumes a larger and often dominant role in the performance or properties. Many examples come readily to mind. In magnetic hard disks, the active cobaltalloy layer, itself only about 50 nm thick, is grown either on a crystalline chromium thin film or directly onto amorphous nickel-phosphorous, and capped with a protective carbon or chromium-carbon coating (see Figure 1). The recording head “flies” at 90 mph and about 0.1 ü above this combination, which is expected to be mechanically durable and magnetically reliable for thousands of recordings. Atomic-scale multilayers are being investigated to provide the ability to “tune” the magnetic properties of the active recording layer or head materials. Exchange coupled magneto-optical media consisting of a few tens of angstroms of cobalt or nickel layers on amorphous TbFeCo alloys are showing promise for improving magneto-optical coupling while maintaining perpendicular anisotropy. In microelectronic circuits, aluminum or silicide contacts to silicon are essential to any device, and multilevel integration involving a series of metal, alloy, silicon (amorphous, poly- or monocrystalline) and dielectric layers (some of which might be 1-10 nm thick) are increasingly required to achieve large-scale integration. Metal-metalloid (e.g., MoSi, W-C) multilayers are used for x-ray optical elements. Artificially produced metallic superlattices and multilayers are being used to probe the fundamental magnetic, electronic, mechanical, and structural properties of metal-metal interfaces.

Type
Multilayer Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schwarz, R.B. and Johnson, W.L., “Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals,” Phys. Rev. Lett. 51 (5) (1983) p. 415.CrossRefGoogle Scholar
2.Solid State Amorphizing Transformations: Proceedings of the Conference on Solid State Amorphizing Transformations, Los Alamos, NM, August 10-13, 1987, edited by Schwarz, R.B. and Johnson, W.L. (Elsevier Sequoia S.A., Lausanne, 1988).Google Scholar
3.Clemens, B.M., “Solid-State Reaction and Structure in Compositionally Modulated Zirconium-Nickel and Titanium-Nickel Films,” Phys. Rev. B 33 (11) (1986) p. 7615.CrossRefGoogle ScholarPubMed
4.Clemens, B.M., Johnson, W.L., and Schwarz, R.B., “Amorphous Nickel Zirconium Formed by Solid State Reaction,” J. Non. Cryst. Solids 61 & 62 (1984) p. 817.CrossRefGoogle Scholar
5.Schröder, H., Samwer, K., and Köster, U., “Micromechanism for Metallic-Glass Formation by Solid State Reaction, “Phys. Rev. Lett. 54 (3) (1985) p. 197.CrossRefGoogle Scholar
6.Cotts, E.J., Meng, W.L., and Johnson, W.L., “Calorimetrie Study of Amorphization in Planar, Binary, Multilayer Thin-Film Diffusion Couples of Ni and Zr,” Phys. Rev. Lett. 57 (1986) p. 2295.CrossRefGoogle Scholar
7.Cheng, Y.-T., Johnson, W.L., and Nicolet, M-A., “Dominant Moving Species in the Formation of Amorphous Ni/Zi by Solid State Reaction,” Appl. Phys. Lett. 47 (8) (1985) p. 800.CrossRefGoogle Scholar
8.Johnson, W.L., “Crystal-to-Glass Transformation in Metallic Materials,” Mater. Sci. Eng. 97 (1988) p. 113.CrossRefGoogle Scholar
9.Clemens, B.M. and Buchholz, J.C., “Amorphous Phase Formation in Solid State Reactions of Layered Nickel Zirconium Films,” in Layered Structures, Epitaxy, Interfaces, edited by Gibson, J.M. and Dawson, L.R., (Mater. Res. Soc. Symp. Proc. 37, Pittsburgh, PA, 1985) p. 559564.Google Scholar
10.Vrendenberg, A.M., Westendorp, J.F.M., Saris, F.W., van der Pers, N.M., and de Keijser, Th.H., “Evidence for a Nucleation Barrier in the Amorphous Phase Formation by Solid-State Reaction of Ni and Single-Crystal Zr,” J. Mater. Res. 1 (1986) p. 774780.CrossRefGoogle Scholar
11.Meng, W.J., Nieh, C.W., Ma, E., Fultz, B., and Johnson, W.L., “Solid State Interdiffusion Reactions of Ni/Zr Diffusion Couples,” Mater. Sci. and Eng. 97 (1988) p. 87.CrossRefGoogle Scholar
12.Johnson, R.W., Ahn, C.C., and Ratner, E.R., “Grain Boundary Amorphization Reaction in Thin Films of Elemental Cu and Y,” J. of Appl. Phys. submitted, 1989.Google Scholar
13.Bakker, H., “Fast Metal Impurity Diffusion in Metals and the Miedema Model,” J. Less. Comm. Met. 105, p. 129 (1983).CrossRefGoogle Scholar
14.Falco, C.M., “Structural and Electronic Properties of Artificial Metallic Superlattices,” Journal de Physique C5 (1984) p. 499507.Google Scholar
15.Clemens, B.M., “Structure of Early Transition Metal-Late Transition Metal Multilayers,” J. Less. Comm. Met. 140 (1988) p. 5766.CrossRefGoogle Scholar
16.der Kolk, G.J. Van, Miedema, A.R., and Niessen, A.K., “On the Composition Range of Amorphous Binary Transition Metal Alloys,” J. Less Comm. Met. 145 (1988) p. 117.CrossRefGoogle Scholar
17.Giessen, B.C., “Glass Formation Diagrams: A Two Parameter Representation of Readily Glass Forming Binary Alloy Systems,” Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai (1982) p. 213.Google Scholar
18.Miedema, A.R., “The Heat of Formation of Alloys,” Philips Tech. Rev. 36 (1976) p. 217.Google Scholar
19.Turnbull, D., “Formation of Crystal Nuclei in Liquid Metals,” J. of Appl. Phys. 21 (1950) p. 10221027.CrossRefGoogle Scholar
20.Saunders, N. and Miodownik, A.P., “Thermodynamic Aspects of Amorphous Phase Formation,” J. Mater. Res. 1 (1986) p. 3846.CrossRefGoogle Scholar
21.Bormann, R., Gärtner, F., and Zöltzer, K., “Application of the CALPHAD Method for the Prediction of Amorphous Phase Formation,” J. Less-Comm. Met. 145 (1988) p. 1929.CrossRefGoogle Scholar
22.Miedema, A.R. and Niessen, A.K., “Volume Effects Upon Alloying of Two Transition Metals,” Physica 114B (1982) p. 367374.Google Scholar
23.Schwarz, R.B., Wong, K.L., Johnson, W.L., and Clemens, B.M., “A Study of Amorphous Alloys of Au with Group iii A Elements (Y and La) Formed by a Solid-State Reaction,” J. Non-Cryst. Solids 61 & 62 (1984) p. 415418.Google Scholar
24.Clemens, B.M. and Neumeier, J.J., “Ion-Beam Mixed Iron Boron Films,” J. of Appl. Phys. 58 (1985) p. 40614064.CrossRefGoogle Scholar
25.Brouder, C., Krill, G., Guilmin, P., Marchal, G., Dartyge, E., Fontaine, A., and Tourillon, G., “Solid-State Reaction in Ce/Ni Multilayers Studied by X-ray Absorption Spectroscopy,” Phys. Rev. B 37 (1988) p. 24332439.CrossRefGoogle ScholarPubMed
26.Guilmin, P., Guyot, P., and Marchai, G., “Amorphization of Crystalline Co and Sn Multilayers By Solid State Reaction,” Physics Letters 109A (1985) p. 174178.CrossRefGoogle Scholar
27.Atzmon, M., Unruh, K.M., and Johnson, W.L., “Formation and Characterization of Amorphous Erbium-Based Alloys Prepared by Near-Isothermal Cold Rolling of Elemental Composites,” J. of Appl. Phys. 58 (1985) p. 38653870.CrossRefGoogle Scholar
28.Atzmon, M., Verhoeven, J.D., Gibson, E.D., and Johnson, W.L., “Formation and Growth of Amorphous Phases by Solid-State Reaction in Elemental Composites Prepared by Cold Working,” Appl. Phys. Lett. 45 (1984) p. 10521053.CrossRefGoogle Scholar
29.Clemens, B.M. and Suchoski, M.J., “Amorphous Iron Zirconium Formed by Solid State Reaction,” Appl. Phys. Lett. 47 (1985) p. 943.CrossRefGoogle Scholar
30.Van Rossum, M., Nicolet, M-A., and Johnson, W.L., “Amorphization of Hf-Ni Films by Solid-State Reaction,” Phys. Rev. B 29 (1984) p. 5498.CrossRefGoogle Scholar
31.Shan, Z.S., Nafis, S., Aylesworth, K.D., and Sellmyer, J.D., “Magnetic Properties, Anisotropy, and Microstructure of Sputtered Rare-Earth Iron Multilayers,” J. of Appl. Phys. 63 (1988) p. 32183220.CrossRefGoogle Scholar
32.Maritati, L., Falco, C.M., Aboaf, J., and Paul, D.I., “Ferromagnetic Multilayers of Permalloy and TiN,” J. of Appl. Phys. 61 (1987) p. 15881591.CrossRefGoogle Scholar
33.Senda, M. and Nagai, Y., “Magnetic Properties of Multilayer Films Consisting of Fe and Nonmagnetic Layers,” J. of Appl. Phys. 65 (1989) p. 31573160.CrossRefGoogle Scholar
34.Falco, C.M., “Metal-Metal Superlattices” in Conf. Proc. Dynamical Phenomena at Surfaces, Interfaces and Superlattices, Erice, Sicily, Italy, July 1-14, 1984, edited by Nizzoli, F., Rieder, K.H., and Willis, R.F. (Springer-Verlag, Berlin, 1985).Google Scholar
35.Majkrzak, C.F., Gibbs, D., Bōni, P., Goldman, A.I., Kwo, J., Hong, M., Hsieh, T.C., Fleming, R.M., McWhan, D.B., Yafet, Y., Cable, J.W., Bohr, J., Grimm, H., and Chien, C.L., “Magnetic Rare-Earth Superlattices,” J. of Appl. Phys. 63 (1988) p. 34473452.CrossRefGoogle Scholar
36.Maeda, A., Satake, T., Fujimori, T., Tajima, H., Kobayashi, M., and Kuroda, K., “Structural and Magnetic Studies of Artificial Eu/Mn Superlattice,” J. Appl. Phys. 65 (1989) p. 38453848.CrossRefGoogle Scholar
37.Clemens, B.M. and Gay, J.G., “The Effect of Layer Thickness Fluctuations on Superlattice Diffraction,” Phys. Rev. B 35 (1987) p. 9337, Rapid Communication.CrossRefGoogle ScholarPubMed
38.Clemens, B.M. and Williamson, D.L., “Interface Structure and Solid-State Reactions of Fe/Zr Multilayers,” Mat. Res. Soc. Symp. Proc. 103 (1988) p. 159166.CrossRefGoogle Scholar
39.Clemens, B.M., Stec, J.P., Heald, S.M., and Tranquada, J.M., “Structure of Copperhafnium Multilayers,” in Interfaces, Superlattices, and Thin Films, edited by Dow, J.D. and Schuller, I.K. (Mater. Res. Soc. Symp. Proc. 77, Pittsburgh, PA, 1987) p. 489494.Google Scholar
40.Clemens, B.M., Eesley, G.L., and Paddock, C.A., “Time-Resolved Thermal Transport in Compositionally Modulated Metal Films,” Phys. Rev. B 37 (1988) p. 10851096.CrossRefGoogle ScholarPubMed
41.Somekh, R.E., Highmore, R.J., Page, K., Home, R.J., and Barber, Z.H., “The Sputter Deposition of Metal Multilayers,” in Multilayers: Synthesis, Properties, and Nonelectronic Applications, edited by Barbee, T.W. Jr., Spaepen, F., and Greer, L. (Mater. Res. Soc. Symp. Proc. 103, Pittsburgh, PA, 1988) p. 2934.Google Scholar
42.Highmore, R.J., Somekh, R.E., Evetts, J.E., and Greer, A.L., “Differential Scanning Calorimetry Studies of Solid State Amorphization in Multilayer Ni/Zr,” J. Less Comm. Met. 140 (1988) p. 353360.CrossRefGoogle Scholar
43.Chang, C-H., Structural Properties of NiTi, CoSi, and MoSi Multilayered Thin Films PhD thesis, Arizona State University, 1989.Google Scholar
44.Khan, M.R., Chun, C.S.L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C.M., and Schuller, I.K., “Structural, Elastic, and Transport Anomalies in Molybdenum/Nickel Superlattices,” Phys. Rev. B 27 (1983) p. 7186.CrossRefGoogle Scholar
45.Schuller, I.K. and Rahman, A., “Elastic-Constant Anomalies in Metallic Superlattices: A Molecular-Dynamics Study,” Phys. Rev. Lett. 50 (18) (1983) p. 1377.CrossRefGoogle Scholar
46.Bennett, W.R., Leavitt, J.A., and Falco, C.M., “Growth Dynamics at a Metal-Metal Interface,” Phys. Rev. B, 35 (9) (1987) p. 4199.CrossRefGoogle Scholar
47.Clemens, B.M. and Eesley, G.L., “Relationship between Interfacial Strain and the Elastic Response of Multilayer Films,” Phys. Rev. Lett. 61 (1988) p. 23562359.CrossRefGoogle Scholar
48.Huberman, M.L. and Grimsditch, M., “Lattice Expansions and Contractions in Metallic Superlattices,” Phys. Rev. Lett. 62 (1989) p. 14031406.CrossRefGoogle ScholarPubMed
49.Cammarata, R.C. and Sieradzki, K., “Effects of Surface Stress on the Elastic Moduli of Thin Films and Superlattices,” Phys. Rev. Lett. 62 (1989) p. 2005.CrossRefGoogle ScholarPubMed
50.der Merwe, J.H. van, “Crystal Interfaces. Part II. Finite Overgrowths,” J. Appl. Phys. 34 (1962) p. 123127.CrossRefGoogle Scholar
51.Tu, K.N. and Mayer, J.W., “Silicide Formation,” in Thin Films-lnterdiffusion and Reactions: Vol. 10, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (John Wiley & Sons Inc., New York, 1978) p. 359405.Google Scholar
52.Walser, R.M. and Bene, R.W., “First Phase Nucleation in Silicon-Tungsten Metal Planar Interfaces,” Appl. Phys. Lett. 28 (1976) p. 624627.CrossRefGoogle Scholar
53.Grunthaner, P.J., Grunthaner, F.J., and Mayer, J.W., “XPS Study of the Structure of the Nickel-Silicon Interface,” J. Vac. Sci. Tech. 17 (1980) p. 924929.CrossRefGoogle Scholar
54.d'Heurle, F.M. and Gas, P., “Kinetics of Formation of Silicide: A Review,” J. Mater. Res. 1 (1986) p. 205221.CrossRefGoogle Scholar
55.Ma, E., Meng, W.J., Johnson, W.L., and Nicolet, M.A., “Simultaneous Planar Growth of Amorphous and Crystalline in Silicides,” Appl. Phys. Lett. 53 (1988) p. 20335203.CrossRefGoogle Scholar
56.Nicolet, M.A. and Lau, S.S., in VLSI Electronics, Microstructure Science, edited by Einsbruch, N.G. and Larrabee, E.B., 6 (1983) p. 300.Google Scholar
57.Bene, R.W., “A Kinetic-Model for Solid-State Silicide Nucleation,” J. of Appl. Phys. 61 (1987) p. 18261833.CrossRefGoogle Scholar
58.Beyers, R. and Sinclair, R., “Metastable Phase Formation in Titanium-Silicon Thin-Films,” J. of Appl. Phys. 57 (1985) p. 52405245.CrossRefGoogle Scholar
59.Tu, K.N., “Interdiffusion in Thin Films,” Ann. R. Mater. 15 (1985) p. 147176.CrossRefGoogle Scholar
60.Herd, S., Tu, K.N., and Ahn, K.Y., “Formation of Amorphous Rh-Si Alloy by Interfacial Reaction between Amorphous Si and Crystalline Rh Thin Films,” Appl. Phys. Lett. 42 (1983) p. 597.CrossRefGoogle Scholar
61.Holloway, K. and Sinclair, R., “Amorphous Ti-Si Alloy Formed by Interdiffusion of Amorphous Si and Crystalline Ti Multilayers,” J. of Appl. Phys. 61 (1987) p. 13591364.CrossRefGoogle Scholar
62.Holloway, K. and Sinclair, R., “High Resolution and In Situ TEM Studies of Annealing of Ti-Si Multilayers,” J. Less-Common Metals 140 (1988) p. 139148.CrossRefGoogle Scholar
63.Vanderwalker, D.M., “Amorphous Transition Phase of NiSi2,” Appl. Phys. Lett. 48 (1986) p. 707709.CrossRefGoogle Scholar
64.Nathan, M., “Solid-Phase Reaction in Free Standing Layered Ti-Si, V-Si, Cr-Si, Co-Si Films,” J. of Appl. Phys. 63 (1988) p. 55345540.CrossRefGoogle Scholar
65.Holloway, K., Do, K.B., and Sinclair, R., “Interfacial Reactions on Annealing Molybdenum-Silicon Multilayers,” J. of Appl. Phys. 65 (1989) p. 474480.CrossRefGoogle Scholar
66.Raaijmakers, I.J.M.M., Reader, A.H., and Oosting, P.H., “The Formation of an Amorphous Silicide By Thermal Reaction of Sputter Deposited Ti and Si Layers,” J. of Appl. Phys. 63 (1988) p. 27902795.CrossRefGoogle Scholar
67.Morgan, A.E., Broadbent, E.K., Ritz, K.N., Sadana, D.K., and Burrow, B.J., “Interactions of Thin Ti Films with Si, SiO2, and SixOy Under Rapid Thermal Annealing,” J. of Appl. Phys. 64 (1988) p. 344353.CrossRefGoogle Scholar
68.Ogawa, S., Yoshida, T., Kouzaki, T., Sinclair, R., and Tsuji, K., Workshop on Tungsten and Other CVD Metals for ULSI/VLSI Applications IV, in press, 1989.Google Scholar
69.Lur, W. and Chen, L.J., “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti,” Appl. Phys. Lett. 54 (1989) p. 12171219.CrossRefGoogle Scholar
70.Brasen, D., Willens, R.H., Nakahara, S., and Boone, T., “Structural Characterization of Ti-Si Thin Film Superlattices,” J. of Appl. Phys. 60 (1986) p. 35273531.CrossRefGoogle Scholar
71.Johnson, W.L., “Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metalloid Materials,” Prog. Mater. Sci. 30 (1986) p. 81134.CrossRefGoogle Scholar
72.Holloway, K., Interfacial Reactions in Metal-Silicon Multilayers, PhD thesis, Stanford University, 1989.CrossRefGoogle Scholar
73.Sinclair, R., Holloway, K., Kim, K.B., Ko, D.H., Bhansali, A.S., Schwartzman, A.F., and Ogawa, S., Inst. Phys. Conf. Ser., 100 (1989) p. 599607.Google Scholar
74.Svechnikov, V.N., Kocherzhinsky, Y.A., Yupko, L.M., Kulik, O.G., and Shishkin, E.A., “Phase Diagram of Titanium-Silicon System,” Dokl. Akad. Nank. SSSR, 193 (1970) p. 393.Google Scholar
75.Robins, D.A. and Jenkins, D.I., “The Heats of Formation of Some Transition Metal Silicides,” Acta Met. 3 (1955) p. 598604.CrossRefGoogle Scholar
76.Esin, Y.O., Valishev, M.G., Ermakov, A.F., Gel'd, P.V. and Petrushevskij, M.S., “Enthalpy of Formation of Liquid Binary-Alloys of Vanadium and Titanium with Silicon,” Russ. Metall. 2 (1981) p. 7172.Google Scholar
77.Holloway, K. and Bormann, R., to be published.Google Scholar
78.Chu, W.K., Lau, S.S., Mayer, J.W., Muller, J. and Tu, K.N., “Implanted Noble Gas Atoms as Diffusion Markers in Silicide Formation,” Thin Solid Films 25 (1975) p. 393402.CrossRefGoogle Scholar
79.Holloway, K., Sinclair, R., and Nathan, M., “Amorphous Silicide Formation by Thermal Reaction: A Comparison of Several Metal-Silicon Systems,” J. Vac. Sci. Technol. A7 (1989) p. 14791483.CrossRefGoogle Scholar
80.Van Gurp, G.J., Sigurd, D., and Vanderwe, W.F., “Tungsten as a Marker in Thin-Film Diffusion Studies,” Appl. Phys. Lett. 29 (1976) p. 159161.CrossRefGoogle Scholar
81.Chu, W.K., Krautle, H., Mayer, J.W., Muller, H., and Nicolet, M.A., “Identification of Dominant Diffusing Species in Silicide Formation,” Appl. Phys. Lett. 25 (1974) p. 454457.CrossRefGoogle Scholar
82.d'Heurle, F.M., Peterson, S., Stolt, L., and Stritzker, B., “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin-Film,” J. Appl. Phys. 53 (1982) p. 56785681.CrossRefGoogle Scholar
83.Lien, C.D., Nicolet, M.A., and Lau, S.S., Kinetics of CoSi2 from Evaporated Silicon,” Appl. Phys. A34 (1984) p. 249251.CrossRefGoogle Scholar
84.Raaijmakers, I.J.M.M., Van Ijgendoorn, L., Theunissen, A., and Kim, K.B., Mater. Res. Soc. Symp. Proc., in press, 1989.Google Scholar
85.Abelson, J.R., Kim, K.B., Mercer, D.E., Helms, C.R., Sinclair, R., and Sigmon, T.W., “Disordered Intermixing at the Platinum-Silicon Interface Demonstrated by High-Resolution Cross-Sectional Transmission Electron Microscopy, Auger Electron Spectroscopy and MeV Ion Channeling,” J. Appl. Phys. 63 (1988) p. 689692.CrossRefGoogle Scholar
86.Kohler, U.K., Demuth, J.E., and Hamers, R.J., “Surface Reconstruction and the Nucleation of Palladium Silicide on Si(111),” Phys. Rev. Lett. 60 (1988) p. 24992502.CrossRefGoogle ScholarPubMed
87.Tu, K.N., Herd, S.R., and Goesele, U., submitted for publication.Google Scholar
88.Barbee, T.W., Amer. Inst. Phys. Conf. Proc. 75 (1981) p. 131.Google Scholar
89.Spiller, E., Amer. Inst. Phys. Conf. Proc. p. 124.Google Scholar
90.Underwood, J.H. and Attwood, D.T., The Renaissance of X-Ray Optics, Phys. Today 37 (4) (1984) p. 44.CrossRefGoogle Scholar
91.Falco, C.M., Schuller, I.K., “Electronic and Magnetic Properties of Metallic Superlattices,” in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, Orlando, FL, 1985) p. 339364.CrossRefGoogle Scholar
92.Marshall, G.F. (ed)., “Structural and Electronic Properties of Artificial Metallic Superlattices,” edited by Marshall, G.F., Proc. SPIE (1985, 1987) p. 563, 733.Google Scholar
93.Structural and Electronic Properties of Artificial Metallic Superlattices,” edited by Marshall, G.F., Proc. SPIE (1987) p. 733.Google Scholar
94.Ruterana, P., Chevalier, J.P., and Houdy, P., “The Structure of Ultrathin C/W and Si/W Multilayers for High Performance in Soft X-Ray Optics,” J. Appl. Phys. 65 (1989) p. 39073913.CrossRefGoogle Scholar
95.Petford-Long, A.K., Stearns, M.B., Chang, C.H., Nutt, S.R., Stearns, D.G., Ceglio, N.M., and Hawryluk, A.M., “High-Resolution Electron Microscopy Study of X-Ray Multilayer Structures,” J. Appl. Phys. 61 (1987) p. 14221428.CrossRefGoogle Scholar
96.Lamble, C.M., Heald, S.M., Sayers, D.E., Ziegler, E., and Viccaro, P.J., “Tungsten-Carbon Multilayer Composition and the Effects of Annealing: A Glancing Angle Extended X-Ray Absorption Fine Structure Study,” J. Appl. Phys. 65 (1989) p. 42504255.CrossRefGoogle Scholar
97.Lepetre, C.M., Ziegler, E., Schuller, I.K., and Rivoira, R., “Anomalous Expansion of Tungsten-Carbon Multilayers Used in X-Ray Optics,” J. Appl. Phys. 60 (1986) p. 23012303.CrossRefGoogle Scholar
98.Takagi, Y., Flessa, S.A., Hart, K.L., Pawlik, D.A., Kadin, A.M., Wood, J.L., Keem, J.E., and Tyler, J.E., Proc. SPIE 563 (1985) p. 66.CrossRefGoogle Scholar
99.Nakayama, N., Katamoto, T., Shinjo, T., Takada, T., “Mössbauer Study of Fe/C Multilayer Films,” J. Phys. F 18 (1988) p. 443449.CrossRefGoogle Scholar
100.Platonov, Y.Y., Polushkin, N.I., Salashchenko, N.N., and Fraerman, A.A., “X-Ray Optical Studies of the Characteristics of Multilayer Studies,” Sov. Phys. Tech. Phys. 32 (1987) p. 13241329.Google Scholar
101.Hirvonen, J.P., Nastasi, M., and Mayer, J.W., “Ion-Beam Mixing of Multilayered Ti/C and Fe/C Structures,” Nucl. Inst. Meth. B13 (1986) p. 479483.CrossRefGoogle Scholar
102.Williams, B.E. and Glass, J.J., “Characterization of Diamond Films: Diamond Phase Identification, Surface Morphology, and Defect Structures,” J. Mater. Res. 4 (1989) p. 373384.CrossRefGoogle Scholar
103.Somekh, R.E., “The Thermalization of Energetic Atoms During the Sputtering Process,” J. Vac. Sci. Technol., A 2 (1984) p. 12851291.CrossRefGoogle Scholar
104.Hoffman, D.W., “Stress and Property Control in Sputtered Metal Films without Substrate Bias,” Thin Solid Films 107 (1983) p. 353358.CrossRefGoogle Scholar
105.Kozono, Y., Komuro, M., Narishige, S., Hanazono, M., and Sugita, Y., “Structures and Magnetic Properties of Fe/Ag Multilayer Films Prepared by Sputtering and Ultrahigh-Vacuum Depositions,” J. of Appl. Phys. 63 (1988) p. 34703472.CrossRefGoogle Scholar
106.Clemens, B.M., “The Effect of Sputtering Pressure on Structure and Solid State Reaction of Ni/Ti Compositionally Modulated Films,” J. of Appl. Phys. 61 (1987) p. 4525.CrossRefGoogle Scholar
107.Barbee, T.W. Jr., “Synthesis of Multilayer Structures by Physical Vapor Deposition Techniques”, in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, Orlando, 1988) p. 313338.Google Scholar
108.Vook, R.W., “Structure and Growth of Thin Films,” Int. Met. Rev. 27 (1982) p. 209245.CrossRefGoogle Scholar
109.Clemens, B.M., unpublished result, 1987.Google Scholar