Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-13T10:43:10.298Z Has data issue: false hasContentIssue false

Nanoscale Manufacturing Enabled by Imprint Lithography

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Imprint lithography has a remarkable patterning resolution of less than 5 nm, and it is simultaneously capable of patterning over large areas with long-range order. This combination enables a broad range of potential applications including terabit-density magnetic storage, CMOS integrated circuits, and nanowire molecular memory. This article provides a review of the status of imprint lithography for nanoscale manufacturing. First, representative nanoscale devices and their manufacturing requirements are reviewed, along with key patterning challenges that have to be overcome to enable these nanoscale applications. Two classes of top–down nanopatterning techniques, namely, photon-based lithography and proximity mechanical nanopatterning (including imprint lithography), are described, followed by the three primary building blocks of imprint lithography: imprint masks, tools, and materials. Theresults of the lithography process are detailed in terms of process data such as long-range order in the placement and size of the nanostructures, process throughput, and overall cost considerations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hershey, R., Miller, M., Jones, C., Subramanian, M.G., Xiaoming, L., Doyle, G., Lentz, D., LaBrake, D., Proc. SPIE Microlith. 6337, 63370M-1 (2006).Google Scholar
2.Schmid, G., Doyle, G., Miller, M., Resnick, D., presented at the EIPBN Conference, Denver, CO, June 2007.Google Scholar
4.Hwang, S., Kim, H., Yeo, J.-H., Eynon, B., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 692105 (2008).Google Scholar
5.Chen, Y., Jung, G.-Y., Ohlberg, D.A., Li, X., Stewart, D.R., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F., Williams, R.S., Nanotechnology 14, 462 (2003).CrossRefGoogle Scholar
6.Glangchai, L.C., Caldorera-Moore, M., Shi, L., Roy, K., J. Controlled Release 125, 263 (2008).CrossRefGoogle Scholar
7.Ohtsuka, Y., Koshikawa, T., Aikawa, K., Maeda, H., Mizoshita, Y., IEEE Trans. Magn. 33 (5), 2620 (1997).CrossRefGoogle Scholar
8.Christie, R.K., Marrian, C.R.K., Tennant, D.M., J. Vac. Sci. Technol. A 21 (5), S207 (2003).Google Scholar
9.Austin, M.D., Ge, H., Wu, W., Li, M., Yu, Z., Wasserman, D., Lyon, S.A., Chou, S.Y., Appl. Phys. Lett. 84, 5299 (2004).CrossRefGoogle Scholar
10.Bandic, Z.Z., Dobisz, E.A., Wu, T.W., Albrecht, T.R., Solid State Technol. 49 (9, Data Storage Suppl.) (September 2006).Google Scholar
11.Yang, X., Xioa, S., invited presentation at SPIE Advanced Lithography, 1 March 2008.Google Scholar
12.Sreenivasan, S.V., McMackin, I., Xu, F., Wang, D., Stacey, N., Resnick, D., Micro Mag. (January/February 2005).Google Scholar
13.Sreenivasan, S.V., Schumaker, P.D., Choi, B.J., in Proceedings of the ASPE 2008 Spring Topical Meeting on Precision Mechanical Design and Mechatronics for sub-50-nm Semiconductor Equipment (ASPE, Chicago, IL, 2008), pp. 7890.Google Scholar
14.Boning, D., Lee, B., MRS Bull. 27 (10), 761 (2002).CrossRefGoogle Scholar
15.Müller, T., Kumpe, R., Gerber, H.A., Schmolke, R., Passek, F., Wagner, P., Microelectron. Eng. 56 (1–2), 123 (2001).CrossRefGoogle Scholar
16.Singhal, S., Sreenivasan, S.V., in Proceedings of the 22nd ASPE Annual Meeting, Dallas, Texas, October 2007.Google Scholar
17.Gordon, J., Keynote Speaker, IBM Almaden, IEEE Lithography Workshop, Rio Grande, Puerto Rico, 10–13 December 2007.Google Scholar
18.Lin, B.J., J. Microlithogr., Microfabr. Microsyst. 3 (3), 377 (2004).Google Scholar
19.Finders, J., Dusa, M., Vleeming, B., Megens, H., Hepp, B., Maenhoudt, M., Cheng, S., Vandeweyer, T., Proc. SPIE Adv. Lithogr. Conf., Opt. Microlithogr. XXI 6924, 692408 (2008).CrossRefGoogle Scholar
20.Mori, I., Suga, O., Tanaka, H., Nishiyama, I., Terasawa, T., Shigemura, H., Taguchi, T., Tanaka, T., Itani, T., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 692102 (2008).Google Scholar
21.Chou, S.Y., Krauss, P.R., Renstrom, P.J., J. Vac. Sci. Technol. B 14 (6), 4129 (1996).CrossRefGoogle Scholar
22.Hua, F., Sun, Y., Gaur, A., Meitl, M.A., Bilhaut, L., Rotkina, L., Wang, J., Geil, P., Shim, M., Rogers, J.A., Shim, A., Nano Lett. 4 (12), 2467 (2004).CrossRefGoogle Scholar
23.Xia, Y., Whitesides, G.M., Angew. Chem., Int. Ed. Engl. 37, 550 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
24.Colburn, M., Grot, A., Amistoso, M., Choi, B.J., Bailey, T., Ekerdt, J., Sreenivasan, S.V., Hollenhorst, J., Willson, C.G., Proc. SPIE Int. Symp. Microlithogr.: Emerg. Lithogr. Technol. III 3997, 453 (2000).Google Scholar
25.Resnick, D.J., Sreenivasan, S.V., Willson, C.G., Mater. Today 8 (2), 34 (2005).CrossRefGoogle Scholar
26.Resnick, D., Schmid, G., Miller, M., Doyle, G., Jones, C., LaBrake, D., Solid State Technol. (February 2007).Google Scholar
27.Otto, M., Bender, M., Richter, F., Hadam, B., Kliem, T., Jede, R., Spangenberg, B., Kurz, H., Microelectron. Eng. 73–74, 152 (2004).CrossRefGoogle Scholar
28.Sogo, K., Nakajima, M., Kawata, H., Hirai, Y., Microelectron. Eng. 84, 909 (2007)CrossRefGoogle Scholar
29.Deguchi, K., Takeuchi, N., Shimizu, A., Jpn. J. Appl. Phys. 41 (1), 4178 (2002).CrossRefGoogle Scholar
30.Sirotkina, V., Svintsova, A., Schift, H., Zaitseva, S., Microelectron. Eng. 84, 868 (2007).CrossRefGoogle Scholar
31.Choi, B.J., Nordquist, K., Cherala, A., Casoose, L., Gehoski, K., Dauksher, W.J., Sreenivasan, S.V., Resnick, D.J., Microelectron. Eng. 78–79, 633 (2005).CrossRefGoogle Scholar
32.McMackin, I., Martin, W., Perez, J., Selenidis, K., Maltabes, J., Xu, F., Resnick, D., Sreenivasan, S.V., J. Vac. Sci. Technol. B 26 (1), 51 (2008).Google Scholar
33.McMackin, I., Perez, J., Selinidis, K., Maltabes, J., Resnick, D., Sreenivasan, S.V., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 69211L (2008).Google Scholar
34.Bailey, T., Choi, B.J., Colburn, M., Grot, A., Meissl, M., Shaya, S., Ekerdt, J.G., Sreenivasan, S.V., Willson, C.G., J. Vac. Sci. Technol. B 18 (6), 3572 (2000).CrossRefGoogle Scholar
35.Stewart, M.D., Johnson, S.C., Sreenivasan, S.V., Resnick, D.J., Willson, C.G., J. Microlithogr., Microfabr. Microsyst. 4 (1), 011002 (2005).Google Scholar
36.Schmid, G.M., Khusnatdinov, N., Brooks, C.B., LaBrake, D., Thompson, E., Resnick, D.J., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 692109 (2008).Google Scholar
37.Miller, M., Brooks, C., Lentz, D., Doyle, G., Resnick, D., LaBrake, D., Proc. SPIE Adv. Fabr. Technol. Micro/Nano Opt. Photonics 6883, 68830D (2008).CrossRefGoogle Scholar
38.Xu, F., Stacey, N.A., Watts, M., Truskett, V., McMackin, I., Choi, B.J., Schumaker, P., Thompson, E., Babbs, D., Sreenivasan, S.V., Willson, C.G., Schumaker, N., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 5374, 232 (2004).Google Scholar
39.Kim, E.K., Stacey, N.A., Smith, B.J., Dickey, M.D., Johnson, S.C., Trinque, B.C., Willson, C.G., J. Vac. Sci. Technol. B 22 (1), 131 (2004).CrossRefGoogle Scholar
40.Houle, F.A., Fornof, A., Miller, D.C., Raoux, S., Truong, H., Simonyi, E., Jahnes, C., Rossnagel, S., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 69210B (2008).Google Scholar
41.Choi, B.J., Johnson, S., Colburn, M., Sreenivasan, S.V., Willson, C.G., J. Int. Soc. Precis. Eng. Nanotechnol. 25 (3), 192 (2001).Google Scholar
42.Cherala, A., Choi, B.J., Nimmakayala, P.K., Meissl, M.J., Sreenivasan, S.V., U.S. Patent No. 7,170,589, 2007.Google Scholar
43.Brooks, C.B., LaBrake, D.L., Khusnatdinov, N., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 69211K (2008)Google Scholar
44.Yoneda, I., Mikami, S., Ota, T., Koshiba, T., Ito, M., Nakasugi, T., Higashiki, T., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 692104 (2008).Google Scholar
45.Hart, M.W., EIPBN Presentation, Denver, CO (May 2007).Google Scholar
46.Schmid, G.M., Stewart, M.D., Wetzel, J., Palmieri, F., Hao, J., Nishimura, Y., Jen, K., Kim, E.K., Resnick, D.J., Liddle, J.A., Willson, C.G., J. Vac. Sci. Technol. B 24 (3), 1283 (2006).CrossRefGoogle Scholar
47.Jen, W.-L., Palmieri, F., Chao, B., Lin, M., Hao, J., Owens, J., Sotoodeh, K., Cheung, R., Willson, C.G., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6517, 65170K (2007).Google Scholar
48.Chao, B.H., Palmieri, F., Jen, W.-L., McMichael, D.H., Willson, C.G., Owens, J., Berger, R., Sotoodeh, K., Wilks, B., Pham, J., Carpio, R., LaBelle, E., Wetzel, J., Proc. SPIE Adv. Lithogr., Emerg. Lithogr. Technol. 6921, 69210C (2008).Google Scholar