Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T15:11:18.228Z Has data issue: false hasContentIssue false

NOMAD: The FAIR concept for big data-driven materials science

Published online by Cambridge University Press:  10 September 2018

Claudia Draxl
Affiliation:
Humboldt-Universität zu Berlin, and Fritz-Haber-Institut Berlin, Germany; claudia.draxl@physik.hu-berlin.de
Matthias Scheffler
Affiliation:
Fritz-Haber-Institut Berlin, and Humboldt-Universität zu Berlin, Germany; scheffler@fhi-berlin.mpg.de
Get access

Abstract

Data are a crucial raw material of this century. The amount of data that have been created in materials science thus far and that continues to be created every day is immense. Without a proper infrastructure that allows for collecting and sharing data, the envisioned success of big data-driven materials science will be hampered. For the field of computational materials science, the NOMAD (Novel Materials Discovery) Center of Excellence (CoE) has changed the scientific culture toward comprehensive and findable, accessible, interoperable, and reusable (FAIR) data, opening new avenues for mining materials science big data. Novel data-analytics concepts and tools turn data into knowledge and help in the prediction of new materials and in the identification of new properties of already known materials.

Type
Data-Centric Science for Materials Innovation
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O., Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C., JOM 65, 1501 (2013).CrossRefGoogle Scholar
Castelli, I.E., Olsen, T., Datta, S., Landis, D.D., Dahl, S., Thygesen, K.S., Jacobsen, K.W., Energy Environ. Sci. 5, 5814 (2012).CrossRefGoogle Scholar
Nishijima, M., Ootani, T., Kamimura, Y., Sueki, T., Esaki, S., Murai, S., Fujita, K., Tanaka, K., Ohira, K., Koyama, Y., Tanaka, I., Nat. Commun. 5, ncomms5553 (2014).CrossRefGoogle Scholar
Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C., Sánchez-Carrera, R.S., Gold-Parker, A., Vogt, L., Brockway, A.M., Aspuru-Guzik, A., J. Phys. Chem. Lett. 2, 2241 (2011).CrossRefGoogle Scholar
Warren, J.A., Boisvert, R.F., “Workshop Report: Building the Materials Innovation Infrastructure: Data and Standards A Materials Genome Initiative Workshop” NIST Report No. NISTIR 7898, (2012).Google Scholar
“Empty Rhetoric over Data Sharing Slows Science” [Editorial], Nature 546, 327 (2017).Google Scholar
The NOMAD (Novel Materials Discovery) Center of Excellence (CoE), https://nomad-coe.eu.Google Scholar
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble, C., Grethe, J.S., Heringa, J., ’t Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B., Sci. Data 3, 160018 (2016).CrossRefGoogle ScholarPubMed
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
Ghiringhelli, L.M., Carbogno, C., Levchenko, S., Mohamed, F., Huhs, G., Lueders, M., Oliveira, M., Scheffler, M., Psi-k Scientific Highlight of the Month 131 (2016).Google Scholar
Ghiringhelli, L.M., Carbogno, C., Levchenko, S., Mohamed, F., Huhs, G., Lueders, M., Oliveira, M., Scheffler, M., NPJ Comput. Mater. 3, 46 (2017).CrossRefGoogle Scholar
Rajan, K., Mater. Today 8, 35 (2005).CrossRefGoogle Scholar
Gaultois, M.W., Oliynyk, A.O., Mar, A., Sparks, T.D., Mulholland, G.J., Meredig, B., APL Mater. 4, 053213 (2016).CrossRefGoogle Scholar
Mueller, T., Kusne, A.G., Ramprasad, R., in Reviews in Computational Chemistry, Parrill, A.L., Lipkowitz, K.B., Eds. (Wiley, Hoboken, NJ), vol. 29, p. 186.Google Scholar
Mueller, T., Johlin, E., Grossman, J.C., Phys. Rev. B Condens. Matter 89, 115202 (2014).CrossRefGoogle Scholar
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C., NPJ Comput. Mater. 3, 54 (2017).CrossRefGoogle Scholar
Pilania, G., Wang, C.C., Jiang, X., Rajasekaran, S., Ramprasad, R.. Sci. Rep. 3, 2810 (2013).CrossRefGoogle Scholar
Lilienfeld, A.V., Angew. Chem. Int. Ed. Engl. 57, 4164 (2018).CrossRefGoogle Scholar
Ziletti, A., Kumar, D., Scheffler, M., Ghiringhelli, L.M., Nat. Commun. 9, 2775 (2018).CrossRefGoogle Scholar
Yang, Q., Sing-Long, C.A., Reed, E.J., Chem. Sci. 8, 5781 (2017).CrossRefGoogle Scholar
Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., Draxl, C., Scheffler, M., Phys. Rev. Lett. 114, 105503 (2015).CrossRefGoogle Scholar
Ghiringhelli, L.M., Vybiral, J., Ahmetcik, E., Ouyang, R., Levchenko, S.V., Draxl, C., Scheffler, M., New J. Phys. 19, 023017 (2017).CrossRefGoogle Scholar
Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., Ghiringhelli, L.M., Phys. Rev. Mater. 2, 083802 (2018).Google Scholar
Hansen, K., Montavon, G., Biegler, F., Fazli, S., Rupp, M., Scheffler, M., von Lilienfeld, O.A., Tkatchenko, A., Müller, K.-R., J. Chem. Theory Comput. 9, 3404 (2013).CrossRefGoogle Scholar
Goldsmith, B.R., Boley, M., Vreeken, J., Scheffler, M., Ghiringhelli, L.M., New J. Phys. 19, 013031 (2017).CrossRefGoogle Scholar
Gray, J., The Fourth Paradigm, Data Intensive Discovery, Hey, T., Tansley, S., Tolle, K., Eds. (Microsoft Research, Redmond, WA, 2009).Google Scholar
Van Vechten, J.A., Phys. Rev. 182, 891 (1969).CrossRefGoogle Scholar
Phillips, J.C., Rev. Mod. Phys. 42, 317 (1970).CrossRefGoogle Scholar
Ashby, M., Materials Selection in Mechanical Design, 3rd ed. (Butterworth-Heinemann, Burlington, MA, 1999).Google Scholar
Lejaeghere, K., Bihlmayer, G., Björkman, T., Blaha, P., Blügel, S., Blum, V., Caliste, D., Castelli, I.E., Clark, S.J., Dal Corso, A., de Gironcoli, S., Deutsch, T., Dewhurst, J.K., Di Marco, I., Draxl, C., Dułak, M., Eriksson, O., Flores-Livas, J.A., Garrity, K.F., Genovese, L., Giannozzi, P., Giantomassi, M., Goedecker, S., Gonze, X., Grånäs, O., Gross, E.K.U., Gulans, A., Gygi, F., Hamann, D.R., Hasnip, P.J., Holzwarth, N.A.W., Iuşan, D., Jochym, D.B., Jollet, F., Jones, D., Kresse, G., Koepernik, K., Küçükbenli, E., Kvashnin, Y.O., Locht, I.L.M., Lubeck, S., Marsman, M., Marzari, N., Nitzsche, U., Nordström, L., Ozaki, T., Paulatto, L., Pickard, C.J., Poelmans, W., Probert, M.I.J., Refson, K., Richter, M., Rignanese, G.M., Saha, S., Scheffler, M., Schlipf, M., Schwarz, K., Sharma, S., Tavazza, F., Thunström, P., Tkatchenko, A., Torrent, M., Vanderbilt, D., van Setten, M.J., Van Speybroeck, V., Wills, J.M., Yates, J.R., Zhang, G.X., Cottenier, S., Science 351, aad3000 (2016).CrossRefGoogle Scholar
The Novel Materials Discovery (NOMAD) Repository, https://repository.nomad-coe.eu.Google Scholar
Scientific Data, a journal of the Nature Publishing Group, https://www.nature.com/sdata.Google Scholar
Draxl, C., Illas, F., Scheffler, M., Nature 548, 523 (2017).CrossRefGoogle Scholar
NOMAD—The Materials Science Discovery Repository, https://youtu.be/UcnHGokl2Nc, 2017-05-30.Google Scholar
Conversion of CO2 into Fuels and Other Useful Chemicals, https://youtu.be/zHlS_8PwYYs, 2017-06-23.Google Scholar
An Exciton in Lithium Fluoride—Where Is the Electron? https://youtu.be/XPPDeeP1coM, 2017-06-23.Google Scholar
Mera Acosta, C., Ouyang, R., Fazzio, A., Scheffler, M., Ghiringhelli, L.M., Carbogno, C., arXiv:1805.10950 (2018).Google Scholar