Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T09:18:52.502Z Has data issue: false hasContentIssue false

Point Defects and Diffusion in Nonstoichiometric Metal Oxides

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

This article briefly reviews the relationships between point defects and ion diffusion in nonstoichiometric ionic crystals, with special emphasis on cubic oxides. It focuses on crystalline materials with negligibly small concentrations of nonequilibrium defects such as dislocations and grain boundaries. First, the concepts used to analyze the point defect structure and the diffusion of ions in nonstoichiometric crystals will be discussed. Then, specific oxides will be considered as examples. These oxides are manganosite, Mn1−ΔO, and spinels of the type Me3−δO4 with Fe and Mn cations, respectively.

Type
Point Defects Part II
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tetot, R., Benzakour, M., and Boureau, G., J. Phys. Chem. Solids 51 (1990) p. 545.CrossRefGoogle Scholar
2.Manning, J.R., Diffusion Kinetics for Atoms in Crystals, (D. Van Nostrand, Princeton, NJ, 1968) p. 75.Google Scholar
3.Schmalzried, H., in Solid State Reactions, 2nd ed. (Verlag Chemie, Weinheim, 1981) p. 59.Google Scholar
4.Mrowec, S., Defects and Diffusion in Solids - An Introduction, (Elsevier, Amsterdam, and PWN - Polish Sci. Publ., Warsaw, 1980) p. 204.Google Scholar
5.Le Claire, A.D., in Physical Chemistry, Vol. X, edited by Eyring, H., Henerson, D., and Jost, W. (Academic Press, New York, 1970) p. 262330.Google Scholar
6.Keller, M. and Dieckmann, R., Ber. Bunsenges. Phys. Chem. 89 (1985) p. 883.CrossRefGoogle Scholar
7.Peterson, N.L. and Chen, W.K., J. Phys. Chem. Solids 43 (1982) p. 29.CrossRefGoogle Scholar
8.Tomlinson, S.M., Catlow, C.R.A., and Harding, J.H., J. Phys. Chem. Solids 51 (1990) p. 477.CrossRefGoogle Scholar
9.Schuster, D., Schweika, W., and Dieckmann, R., Ber. Bunsenges. Phys. Chem. 93 (1989) p. 1349.Google Scholar
10.Radler, M.J., Faber, J. Jr., and Cohen, J.B., presented at the 1991 Annual American Ceramic Society Meeting, Cincinnati, OH, 1991 (unpublished).Google Scholar
11.Chen, W.K. and Peterson, N.L., J. Phys. Chem. Solids 36 (1975) p. 1097.CrossRefGoogle Scholar
12.Aggarwal, S. and Dieckmann, R., presented at the 1991 Annual American Ceramic Society Meeting, Cincinnati, OH, 1991 (unpublished).Google Scholar
13.Dieckmann, R., Ber. Bunsenges. Phys. Chem. 86 (1982) p. 112.CrossRefGoogle Scholar
14.Keller, M. and Dieckmann, R., Ber. Bunsenges. Phys. Chem. 89 (1985) p. 1095.CrossRefGoogle Scholar
15.Dieckmann, R. and Schmalzried, H., Ber. Bunsenges. Phys. Chem. 81 (1977) p. 344.CrossRefGoogle Scholar
16.Halloran, J.W. and Bowen, H.K., J. Am. Ceram. Soc. 63 (1980) p. 58.CrossRefGoogle Scholar
17.Peterson, N.L., Chen, W.K., and Wolf, D., J. Phys. Chem. Solids 41 [1980] p. 709.CrossRefGoogle Scholar
18.Dieckmann, R., Mason, T.O., Hodge, J.D., and Schmalzried, H., Ber. Bunsenges. Phys. Chem. 82 (1978) p. 778.CrossRefGoogle Scholar
19.Franke, P. and Dieckmann, R., Solid State Ionics 32/33 (1989) p. 817; P. Franke, Doctoral thesis, University of Hannover (Germany), 1987.Google Scholar
20.Dieckmann, R. and Schmalzried, H., Ber. Bunsenges. Phys. Chem. 90 (1986) p. 564.CrossRefGoogle Scholar
21.Becker, K.D., presented at the 1991 Annual American Ceramic Society Meeting, Cincinnati, OH, 1991 (unpublished).Google Scholar
22.Dieckmann, R., (unpublished results).Google Scholar
23.Schmalzried, H., Z. Physik. Chem. (Frankfurt am Main) 31 (1962) p. 184.CrossRefGoogle Scholar