Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-26T20:35:39.609Z Has data issue: false hasContentIssue false

Progress toward autonomous experimental systems for alloy development

Published online by Cambridge University Press:  09 April 2019

Brad L. Boyce
Affiliation:
Materials, Physical, and Chemical Sciences Center, Sandia National Laboratories, USA; blboyce@sandia.gov
Michael D. Uchic
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson Air Force Base, USA; Michael.Uchic@wpafb.af.mil
Get access

Abstract

Historically, the advent of robotics has important roots in metallurgy. The first industrial robot, Unimate, was used by General Motors to handle hot metal—transporting die castings and welding them to an automotive body. Now, nearly 60 years later, metallurgical use of robotics is still largely confined to automation of dangerous, complex, and repetitive tasks. Beyond metallurgy, the field of autonomy is undergoing a renaissance, impacting applications from pharmaceuticals to transportation. In this article, we review the emerging elements of high-throughput experimental automation, which, when combined with artificial intelligence or machine-learning systems, will enable autonomous discovery of novel alloys and process routes.

Type
Computational Design And Development Of Alloys
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eschenauer, H.A., Olhoff, N., Appl. Mech. Rev. 54, 331 (2001).CrossRefGoogle Scholar
Jared, B.H., Aguilo, M.A., Beghini, L.L., Boyce, B.L., Clark, B.W., Cook, A., Kaehr, B.J., Robbins, J., Scr. Mater. 135, 141 (2017).10.1016/j.scriptamat.2017.02.029CrossRefGoogle Scholar
Sparkes, A., Aubrey, W., Byrne, E., Clare, A., Khan, M.N., Liakata, M., Markham, M., Rowland, J., Soldatova, L.N., Whelan, K.E., Autom. Exp. 2, 1 (2010).CrossRefGoogle Scholar
Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R., Maruyama, B., NPJ Comput. Mater. 2, 16031 (2016).CrossRefGoogle Scholar
Aspuru-Guzik, A., Persson, K., Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence (Report of the Clean Energy Materials Innovation Challenge Expert Workshop, Mexico City, January 2018).Google Scholar
Miracle, D., Majumdar, B., Wertz, K., Gorsse, S., Scr. Mater. 127, 195 (2017).10.1016/j.scriptamat.2016.08.001CrossRefGoogle Scholar
Zhao, J.-C., Annu. Rev. Mater. Res. 35, 51 (2005).CrossRefGoogle Scholar
Cooper, J.S., Zhang, G., McGinn, P.J., Rev. Sci. Instrum. 76, 062221 (2005).10.1063/1.1921552CrossRefGoogle Scholar
Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J., Mehta, A., Sci. Adv. 4, eaaq1566 (2018).CrossRefGoogle Scholar
Sinclair, C., Hutchinson, C., Brechet, Y., Metall. Mater. Trans. A 38, 821 (2007).10.1007/s11661-007-9106-9CrossRefGoogle Scholar
Raabe, D., Springer, H., Gutiérrez-Urrutia, I., Roters, F., Bausch, M., Seol, J.-B., Koyama, M., Choi, P.-P., Tsuzaki, K., JOM 66, 1845 (2014).10.1007/s11837-014-1032-xCrossRefGoogle Scholar
Springer, H., Raabe, D., Acta Mater. 60, 4950 (2012).CrossRefGoogle Scholar
Hofmann, D.C., Kolodziejska, J., Roberts, S., Otis, R., Dillon, R.P., Suh, J.-O., Liu, Z.-K., Borgonia, J.-P., J. Mater. Res. 29, 1899 (2014).CrossRefGoogle Scholar
Niendorf, T., Leuders, S., Riemer, A., Brenne, F., Tröster, T., Richard, H.A., Schwarze, D., Adv. Eng. Mater. 16, 857 (2014).10.1002/adem.201300579CrossRefGoogle Scholar
Qian, T.-T., Dong, L., Tian, X.-J., Liu, C.-M., Wang, H.-M., Trans. Nonferrous Met. Soc. China 24, 2729 (2014).10.1016/S1003-6326(14)63404-XCrossRefGoogle Scholar
Dehoff, R., Kirka, M., Sames, W., Bilheux, H., Tremsin, A., Lowe, L., Babu, S., Mater. Sci. Technol. 31, 931 (2015).CrossRefGoogle Scholar
Vaezi, M., Chianrabutra, S., Mellor, B., Yang, S., Virtual Phys. Prototyp. 8, 19 (2013).CrossRefGoogle Scholar
Coronel, J.L. Jr., “Multi3D System: Advanced Manufacturing Through the Implementation of Material Handling Robotics,” dissertation, The University of Texas at El Paso (2015).Google Scholar
Shemelya, C., Banuelos-Chacon, L., Melendez, A., Kief, C., Espalin, D., Wicker, R., Krijnen, G., MacDonald, E., “Multifunctional 3D Printed and Embedded Sensors for Satellite Qualification Structures,” in 2015 IEEE Sensors (IEEE, New York, 2015).Google Scholar
Flynn, J.M., Shokrani, A., Newman, S.T., Dhokia, V., Int. J. Mach. Tools Manuf. 101, 79 (2016).CrossRefGoogle Scholar
Schwartz, A.J., Kumar, M., Adams, B.L., Field, D.P., Electron Backscatter Diffraction in Materials Science (Springer, New York, 2000).10.1007/978-1-4757-3205-4CrossRefGoogle Scholar
Liu, X., Furrer, D., Kosters, J., Holmes, J., Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems (NASA/CR—2018–219771, 2018).Google Scholar
Michael, J.R., Nakakura, C.Y., Garbowski, T., Eberle, A.L., Kemen, T., Zeidler, D., Microsc. Microanal. 21, 697 (2015).10.1017/S1431927615004286CrossRefGoogle Scholar
Eberle, A.L., Garbowski, T., Bhattiprolu, S., Crosby, K., Zeidler, D., Microsc. Microanal. 23, 2114 (2017).CrossRefGoogle Scholar
Malloy, M., Thiel, B., Bunday, B.D., Wurm, S., Mukhtar, M., Quoi, K., Kemen, T., Zeidler, D., Eberle, A.L., Garbowski, T., “Massively Parallel E-Beam Inspection: Enabling Next-Generation Patterned Defect Inspection for Wafer and Mask Manufacturing,” Proc. SPIE 9423 (International Society for Optics and Photonics, Bellingham, WA, 2015).Google Scholar
Burnett, T., McDonald, S., Gholinia, A., Geurts, R., Janus, M., Slater, T., Haigh, S., Ornek, C., Almuaili, F., Engelberg, D., Sci. Rep. 4, 4711 (2014).CrossRefGoogle Scholar
Slater, T., Bradley, R., Bertali, G., Geurts, R., Northover, S., Burke, M., Haigh, S., Burnett, T., Withers, P., Sci. Rep. 7, 7332 (2017).10.1038/s41598-017-06976-5CrossRefGoogle Scholar
Volkert, C.A., Minor, A.M., MRS Bull . 32, 389 (2007).CrossRefGoogle Scholar
Echlin, M.P., Straw, M., Randolph, S., Filevich, J., Pollock, T.M., Mater. Charact. 100, 1 (2015).CrossRefGoogle Scholar
Burnett, T., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M., Withers, P., Ultramicroscopy 161, 119 (2016).CrossRefGoogle Scholar
Spowart, J.E., Mullens, H.E., Puchala, B.T., JOM 55, 35 (2003).10.1007/s11837-003-0173-0CrossRefGoogle Scholar
Uchic, M., Groeber, M., Shah, M., Callahan, P., Shiveley, A., Scott, M., Chapman, M., Spowart, J., “An Automated Multi-Modal Serial Sectioning System for Characterization of Grain-Scale Microstructures in Engineering Materials,” Proc. 1st Int. Conf. 3D Mater. Sci. (Springer, New York, 2012).Google Scholar
Madison, J.D., Underwood, O., Poulter, G.A., Huffman, E.M., Integr. Mater. Manuf. Innov. 6, 135 (2017).CrossRefGoogle Scholar
Chapman, M., Scott, J.M., Schwalbach, E.J., Groeber, M.A., Donegan, S.P., Uchic, M.D., Microsc. Microanal. 23, 318 (2017).CrossRefGoogle Scholar
DeCost, B.L., Holm, E.A., Comput. Mater. Sci. 110, 126 (2015).CrossRefGoogle Scholar
DeCost, B.L., Jain, H., Rollett, A.D., Holm, E.A., JOM 69, 456 (2017).CrossRefGoogle Scholar
Azimi, S.M., Britz, D., Engstler, M., Fritz, M., Mücklich, F., Sci. Rep. 8, 2128 (2018).CrossRefGoogle Scholar
Nuspl, M., Wegscheider, W., Angeli, J., Posch, W., Mayr, M., Anal. Bioanal. Chem. 379, 640 (2004).CrossRefGoogle Scholar
Godaliyadda, G., Ye, D.H., Uchic, M.D., Groeber, M.A., Buzzard, G.T., Bouman, C.A., “A Supervised Learning Approach for Dynamic Sampling,” Electron. Imag. 2016 (19), pp. 18.Google Scholar
Zhang, Y., Godaliyadda, G.D., Ferrier, N., Gulsoy, E.B., Bouman, C.A., Phatak, C., Ultramicroscopy 184, 90 (2018).CrossRefGoogle Scholar
Hattrick-Simpers, J.R., Gregoire, J.M., Kusne, A.G., APL Mater . 4, 053211 (2016).CrossRefGoogle Scholar
Gregoire, J.M., Dale, D., Kazimirov, A., DiSalvo, F.J., van Dover, R.B., Rev. Sci. Instrum. 80, 123905 (2009).CrossRefGoogle Scholar
Xing, H., Zhao, B., Wang, Y., Zhang, X., Ren, Y., Yan, N., Gao, T., Li, J., Zhang, L., Wang, H., ACS Comb. Sci. 20, 127 (2018).CrossRefGoogle Scholar
Rice, R.C., Metallic Materials Properties Development and Standardization (MMPDS) (National Technical Information Service, Alexandria, VA, 2003).Google Scholar
Papadakis, E.P., “Ultrasonic Velocity and Attenuation: Measurement Methods with Scientific and Industrial Applications,” in Physical Acoustics, Mason, W.P., Thurston, R.N., Eds. (Academic Press, New York, 1976), vol. XII, 277.CrossRefGoogle Scholar
Baker, G.M., Quality 30, 33 (1991).Google Scholar
Zhao, J.C., Adv. Eng. Mater. 3, 143 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
Weaver, J.S., Khosravani, A., Castillo, A., Kalidindi, S.R., Integr. Mater. Manuf. Innov. 5, 10 (2016).CrossRefGoogle Scholar
Wheeler, J., Armstrong, D., Heinz, W., Schwaiger, R., Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).10.1016/j.cossms.2015.02.002CrossRefGoogle Scholar
Guillonneau, G., Mieszala, M., Wehrs, J., Schwiedrzik, J., Grop, S., Frey, D., Philippe, L., Breguet, J.-M., Michler, J., Wheeler, J.M., Mater. Des. 148, 39 (2018).CrossRefGoogle Scholar
Ghosh, A., Jin, S., Arreguin-Zavala, J., Brochu, M., J. Mater. Res. 32, 2241 (2017).CrossRefGoogle Scholar
Wang, Y., Bringa, E., McNaney, J., Victoria, M., Caro, A., Hodge, A., Smith, R., Torralva, B., Remington, B., Schuh, C., Appl. Phys. Lett. 88, 061917 (2006).CrossRefGoogle Scholar
Steck, J.G., Fleming, R.A., Goss, J.A., Zou, M., Appl. Surf. Sci. 433, 617 (2018).CrossRefGoogle Scholar
Bufford, D.C., Stauffer, D., Mook, W.M., Syed Asif, S., Boyce, B.L., Hattar, K., Nano Lett . 16, 4946 (2016).CrossRefGoogle Scholar
Stauffer, D., Hintsala, E., Hangen, U., “Nanomechanical Mapping for Measuring Individual Phases,” presented at the Materials Science and Technology Conference, Columbus, OH, 2018.Google Scholar
Salzbrenner, B.C., Rodelas, J.M., Madison, J.D., Jared, B.H., Swiler, L.P., Shen, Y.-L., Boyce, B.L., J. Mater. Process. Technol. 241, 1 (2017).CrossRefGoogle Scholar
Boyce, B.L., Salzbrenner, B.C., Rodelas, J.M., Swiler, L.P., Madison, J.D., Jared, B.H., Shen, Y.L., Adv. Eng. Mater. 19, 1700102 (2017).10.1002/adem.201700102CrossRefGoogle Scholar
Konovalenko, I., Maruschak, P., Prentkovskis, O., Metals 8, 161 (2018).CrossRefGoogle Scholar
Dutta, S., Das, A., Barat, K., Roy, H., Measurement 45, 1140 (2012).10.1016/j.measurement.2012.01.026CrossRefGoogle Scholar
Chu, T., Ranson, W., Sutton, M.A., Exp. Mech. 25, 232 (1985).10.1007/BF02325092CrossRefGoogle Scholar
Rossi, M., Broggiato, G., Papalini, S., Meccanica 43, 185 (2008).10.1007/s11012-008-9123-9CrossRefGoogle Scholar
Grediac, M., Pierron, F., Avril, S., Toussaint, E., Strain 42, 233 (2006).10.1111/j.1475-1305.2006.00283.xCrossRefGoogle Scholar
Fu, J., Barlat, F., Kim, J.-H., Pierron, F., Int. J. Plast. 93, 229 (2017).10.1016/j.ijplas.2016.07.013CrossRefGoogle Scholar
Avril, S., Pierron, F., Sutton, M.A., Yan, J., Mech. Mater. 40, 729 (2008).CrossRefGoogle Scholar
Jones, E., Carroll, J.D., Karlson, K.N., Kramer, S.L.B., Lehoucq, R.B., Reu, P.L., Turner, D.Z., Comput. Mater. Sci. 152, 268 (2018).CrossRefGoogle Scholar
Knoll, H., Ocylok, S., Weisheit, A., Springer, H., Jägle, E., Raabe, D., Steel Res. Int. 88, 1600416 (2017).10.1002/srin.201600416CrossRefGoogle Scholar
Wang, X., Wang, L., Huang, M., Acta Mater. 124, 17 (2017).CrossRefGoogle Scholar
Ehrhardt, D.A., Allen, M.S., Yang, S., Beberniss, T.J., Mech. Syst. Sig. Process. 86, 82 (2017).CrossRefGoogle Scholar
Kusne, A.G., Gao, T., Mehta, A., Ke, L., Nguyen, M.C., Ho, K.-M., Antropov, V., Wang, C.-Z., Kramer, M.J., Long, C., Sci. Rep. 4, 6367 (2014).CrossRefGoogle Scholar
Hauptmann, P., Hoppe, N., Püttmer, A., Meas. Sci. Technol. 13, R73 (2002).CrossRefGoogle Scholar
Tapia, G., Elwany, A., J. Manuf. Sci. Eng. 136, 060801 (2014).CrossRefGoogle Scholar
Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T., Mater. Des. 95, 431 (2016).CrossRefGoogle Scholar
Dimiduk, D.M., Holm, E.A., Niezgoda, S.R., Integr. Mater. Manuf. Innov. 1 (2018).Google Scholar
Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., Foster, I., JOM 68, 2045 (2016).CrossRefGoogle Scholar
Dima, A., Bhaskarla, S., Becker, C., Brady, M., Campbell, C., Dessauw, P., Hanisch, R., Kattner, U., Kroenlein, K., Newrock, M., JOM 68, 2053 (2016).CrossRefGoogle Scholar
Schmidt, M., Lipson, H., Science 324, 81 (2009).CrossRefGoogle Scholar
Haghdadi, N., Zarei-Hanzaki, A., Khalesian, A., Abedi, H., Mater. Des. 49, 386 (2013).CrossRefGoogle Scholar
Solomou, A., Zhao, G., Boluki, S., Joy, J.K., Qian, X., Karaman, I., Arróyave, R., Lagoudas, D.C., Mater. Des. 160, 810 (2018).CrossRefGoogle Scholar
Agrawal, A., Choudhary, A., APL Mater . 4, 053208 (2016).CrossRefGoogle Scholar