Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-15T06:41:51.490Z Has data issue: false hasContentIssue false

Determination of adsorption-controlled growth windows of chalcogenide perovskites

Published online by Cambridge University Press:  12 February 2018

Stephen A. Filippone
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Yi-Yang Sun
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
R. Jaramillo*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Address all correspondence to R. Jaramillo at rjaramil@mit.edu
Get access

Abstract

Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with a band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Here we use computational thermodynamics to predict the pressure–temperature phase diagrams for select chalcogenide perovskites. Our calculations incorporate formation energies calculated by density functional theory, and empirical estimates of heat capacities. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These results can guide the adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nechache, R., Harnagea, C., Li, S., Cardenas, L., Huang, W., Chakrabartty, J., and Rosei, F.: Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 6167 (2015).Google Scholar
2. Grinberg, I., West, D.V., Torres, M., Gou, G., Stein, D.M., Wu, L., Chen, G., Gallo, E.M., Akbashev, A.R., Davies, P.K., Spanier, J.E., and Rappe, A.M.: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509512 (2013).CrossRefGoogle ScholarPubMed
3. Berger, R.F. and Neaton, J.B.: Computational design of low-band-gap double perovskites. Phys. Rev. B 86, 165211 (2012).Google Scholar
4. Choi, W.S., Chisholm, M.F., Singh, D.J., Choi, T., Jellison, G.E. Jr., and Lee, H.N.: Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012), ncomms1690.Google Scholar
5. Gou, G.Y., Bennett, J.W., Takenaka, H., and Rappe, A.M.: Post density functional theoretical studies of highly polar semiconductive Pb (Ti1−xNix)O3−x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B 83, 205115 (2011).CrossRefGoogle Scholar
6. Xu, X.S., Ihlefeld, J.F., Lee, J.H., Ezekoye, O.K., Vlahos, E., Ramesh, R., Gopalan, V., Pan, X.Q., Schlom, D.G., and Musfeldt, J.L.: Tunable band gap in Bi(Fe1−xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010).Google Scholar
7. Parida, S., Satapathy, A., Sinha, E., Bisen, A., and Rout, S.K.: Effect of neodymium on optical bandgap and microwave dielectric properties of barium zirconate ceramic. Metall. Mater. Trans. A 46, 12771286 (2015).Google Scholar
8. Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R., and Ravichandran, J.: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).Google Scholar
9. Brehm, J.A., Takenaka, H., Lee, C.-W., Grinberg, I., Bennett, J.W., Schoenberg, M.R., and Rappe, A.M.: Density functional theory study of hypothetical PbTiO3-based oxysulfides. Phys. Rev. B 89, 195202 (2014).Google Scholar
10. Perera, S., Hui, H., Zhao, C., Xue, H., Sun, F., Deng, C., Gross, N., Milleville, C., Xu, X., Watson, D.F., Weinstein, B., Sun, Y.-Y., Zhang, S., and Zeng, H.: Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 22, 129135 (2016).Google Scholar
11. Meetsma, A., Wiegers, G.A., and de Boer, J.L.: Structure determination of SnZrS3 . Acta Crystallogr. C 49, 20602062 (1993).Google Scholar
12. Clearfield, A.: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 16, 135142 (1963).Google Scholar
13. Lee, C.-S., Kleinke, K.M., and Kleinke, H.: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 10491054 (2005).Google Scholar
14. Hahn, H. and Mutschke, U.: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269278 (1957).Google Scholar
15. Schmidt, L.: Superconductivity in PbNbS3 and PbTaS3 . Phys. Lett. A 31, 551552 (1970).Google Scholar
16. Lelieveld, R. and IJdo, D.J.W.: Sulphides with the GdFeO3 structure. Acta Crystallogr. B 36, 22232226 (1980).CrossRefGoogle Scholar
17. Bennett, J.W., Grinberg, I., and Rappe, A.M.: Effect of substituting of S for O: the sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).CrossRefGoogle Scholar
18. Sun, Y.-Y., Agiorgousis, M.L., Zhang, P., and Zhang, S.: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581585 (2015).Google Scholar
19. Kolb, B. and Kolpak, A.M.: First-principles design and analysis of an efficient, Pb-free ferroelectric photovoltaic absorber derived from ZnSnO3 . Chem. Mater. 27, 58995906 (2015).Google Scholar
20. Meng, W., Saparov, B., Hong, F., Wang, J., Mitzi, D.B., and Yan, Y.: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821829 (2016).Google Scholar
21. Wang, H., Gou, G., and Li, J.: Ruddlesden–Popper perovskite sulfides A3B2S7: a new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507513 (2016).CrossRefGoogle Scholar
22. Ju, M.-G., Dai, J., Ma, L., and Zeng, X.C.: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 7, 1700216 (2017).Google Scholar
23. Tsao, J.Y.: Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, Boston, 1993).Google Scholar
24. Henini, M.: Molecular Beam Epitaxy: from Research to Mass Production (Elsevier, Amsterdam, 2013).Google Scholar
25. Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., and Brown, G.W.: Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107114 (1998).Google Scholar
26. Haislmaier, R.C., Stone, G., Alem, N., and Engel-Herbert, R.: Creating Ruddlesden–Popper phases by hybrid molecular beam epitaxy. Appl. Phys. Lett. 109, 043102 (2016).Google Scholar
27. Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Gheribi, A.E., Hack, K., Jung, I.H., Kang, Y.B., Melançon, J., Pelton, A.D., Petersen, S., Robelin, C., Sangster, J., and Van Ende, M.-A.: FactSage thermochemical software and databases, 2010–2016. Calphad 54, 3553 (2016). www.factsage.com.Google Scholar
28. Kopp, H.: Investigations of the specific heat of solid bodies. Philos. Trans. R. Soc. Lond. 155, 71202 (1865).Google Scholar
29. Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P.: Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 497, 713 (2010).CrossRefGoogle Scholar
30. Csonka, G.I., Perdew, J.P., Ruzsinszky, A., Philipsen, P.H.T., Lebègue, S., Paier, J., Vydrov, O.A., and Ángyán, J.G.: Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009).Google Scholar