Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T10:26:55.290Z Has data issue: false hasContentIssue false

The impact of boundary conditions on calculated photovoltages and photocurrents at photocatalytic interfaces

Published online by Cambridge University Press:  19 March 2018

Asif Iqbal*
Affiliation:
Materials Engineering, McGill University, Montréal, H3A 2B2, Québec, Canada
Kirk H. Bevan*
Affiliation:
Materials Engineering, McGill University, Montréal, H3A 2B2, Québec, Canada
*
Address all correspondence to Asif Iqbal and Kirk H. Bevan at E-mail: asif.iqbal@mail.mcgill.ca; kirk.bevan@mcgill.ca
Address all correspondence to Asif Iqbal and Kirk H. Bevan at E-mail: asif.iqbal@mail.mcgill.ca; kirk.bevan@mcgill.ca
Get access

Abstract

This work presents an in-depth study of how the choice of boundary conditions can impact upon the calculated photovoltage and photocurrent in photoelectrochemical (PEC) devices. Utilizing a floating boundary condition for the electrostatic potential and pseudo-Schottky boundary conditions for the interfacial electron/hole currents, we show simultaneous calculation of photovoltage and photocurrent. We also explore the significance of capturing the photovoltage, with proper boundary conditions, to accurately replicate practical photocurrent along with the realistic band alignments. Finally, our results decouple the interfacial hole transfer from the recombination at the interface/space-charged region and suggest possible methods to engineer the mesoscopic transfer process at PEC electrodes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.van de Krol, R.: Principles of photoelectrochemical cells. In Photoelectrochemical Hydrogen Production (Springer, Berlin, 2012).CrossRefGoogle Scholar
2.Peter, L.M. and Upul Wijayantha, K.G.: Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. Chem. Phys. Chem. 15, 1983 (2014).Google Scholar
3.Su, J. and Vayssieres, L.: A place in the sun for artificial photosynthesis? ACS Energy Lett. 1, 121 (2016).CrossRefGoogle Scholar
4.Zandi, O. and Hamann, T.W.: The potential versus current state of water splitting with hematite. Phys. Chem. Chem. Phys. 17, 22485 (2015).Google Scholar
5.Wang, D., Pierre, A., Kibria, M.G., Cui, K., Han, X., Bevan, K.H., Guo, H., Paradis, S., Hakima, A.-R., and Mi, Z.: Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11, 2353 (2011).CrossRefGoogle ScholarPubMed
6.Du, C., Yang, X., Mayer, M.T., Hoyt, H., Xie, J., McMahon, G., Bischoping, G., and Wang, D.: Hematite-based water splitting with low turn-on voltages. Angew. Chem. Int. Ed. 52, 12692 (2013).Google Scholar
7.Iqbal, A., Hossain, M.S., and Bevan, K.H.: The role of relative rate constants in determining surface state phenomena at semiconductor-liquid interfaces. Phys. Chem. Chem. Phys. 18, 29466 (2016).CrossRefGoogle ScholarPubMed
8.Gamelin, D.R.: Catalyst or spectator? Nat. Chem. 4, 965 (2012).CrossRefGoogle ScholarPubMed
9.Thorne, J.E., Li, S., Du, C., Qin, G., and Wang, D.: Energetics at the surface of photoelectrodes and its influence on the photoelectrochemical properties. J. Phys. Chem. Lett. 6, 4083 (2015).Google Scholar
10.Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., and Bisquert, J.: Water oxidation at hematite photoelectrodes: the role of surface states. J. Am. Chem. Soc. 134, 4294 (2012).Google Scholar
11.Nellist, M.R., Laskowski, F.A.L., Lin, F., Mills, T.J., and Boettcher, S.W.: Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733 (2016).CrossRefGoogle Scholar
12.Reichman, J.: The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells. Appl. Phys. Lett. 36, 574 (1980).CrossRefGoogle Scholar
13.Anz, S.J. and Lewis, N.S.: Simulations of the steady-state current density vs potential characteristics of semiconducting electrodes. J. Phys. Chem. B 103, 3908 (1999).CrossRefGoogle Scholar
14.Cass, M.J., Duffy, N.W., Peter, L.M., Pennock, S.R., Ushiroda, S., and Walker, A.B.: Microwave reflectance studies of photoelectrochemical kinetics at semiconductor electrodes. 1. steady-state, transient, and periodic responses. J. Phys. Chem. B 107, 5857 (2003).Google Scholar
15.Cendula, P., Tilley, S.D., Gimenez, S., Bisquert, J., Schmid, M., Grätzel, M., and Schumacher, J.O.: calculation of the energy band diagram of a photoelectrochemical water splitting cell. J. Phys. Chem. C 118, 29599 (2014).CrossRefGoogle Scholar
16.Barnes, P.R.F., Anderson, A.Y., Durrant, J.R., and O'Regan, B.C.: Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour. Phys. Chem. Chem. Phys. 13, 5798 (2011).Google Scholar
17.Iqbal, A. and Bevan, K.H.: Simultaneously solving the photovoltage and photocurrent at semiconductor–liquid interfaces. J. Phys. Chem. C 122, 30 (2018).CrossRefGoogle Scholar
18.Mills, T.J., Lin, F., and Boettcher, S.W.: Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. Phys. Rev. Lett. 112, 148304 (2014).Google Scholar
19.Dotan, H., Mathews, N., Hisatomi, T., Grätzel, M., and Rothschild, A.: On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J. Phys. Chem. Lett. 5, 3330 (2014).CrossRefGoogle ScholarPubMed
20.Shi, X., Herraiz-Cardona, I., Bertoluzzi, L., Lopez-Varo, P., Bisquert, J., Park, J.H., and Gimenez, S.: Understanding the synergistic effect of WO3-BiVO4 heterostructures by impedance spectroscopy. Phys. Chem. Chem. Phys. 18, 9255 (2016).Google Scholar
21.Bockris, J.O., Reddy, A.K.N., and Galboa-Aldeco, M. E.: Modern Electrochemistry 2A, 2nd ed. (Springer: New York, 2000).Google Scholar
22.Pierret, R.F.: Semiconductor Device Fundamentals, (Addison-Wesley, Boston, MA, 1996).Google Scholar
23.Vasileska, D.G., Stephen, M., and Klimeck, G.: Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation (CRC Press, Boca Raton, 2010).Google Scholar
24.Selberherr, S.: Analysis and Simulation of Semiconductor Devices (Springer-Verlag GmbH, Vienna, 1984).CrossRefGoogle Scholar
25.Schroeder, D.: Modelling of Interface Carrier Transport for Device Simulation (Springer-Verlag GmbH, Vienna, 1994).CrossRefGoogle Scholar
26.Memming, R.: Semiconductor Electrochemistry (Wiley-CVH, Weinheim, Germany, 2000).CrossRefGoogle Scholar
27.Sato, N.: Electrochemistry at Metal and Semiconductor Electrodes (Elsevier, Amsterdam, 1998).Google Scholar
28.Crowell, C.S., Sze, S.M.: Current transport in metal-semiconductor barriers. Solid State Electron. 9, 1035 (1966).Google Scholar
29.Kumar, A., Santangelo, P.G., and Lewis, N.S.: Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. J. Phys. Chem. 96, 834 (1992).Google Scholar
30.Le Formal, F., Pastor, E., Tilley, S.D., Mesa, C.A., Pendlebury, S.R., Grätzel, M., and Durrant, J.R.: Rate law analysis of water oxidation on a hematite surface. J. Am. Chem. Soc. 137, 6629 (2015).Google Scholar
31.Le Formal, F., Pendlebury, S.R., Cornuz, M., Tilley, S.D., Grätzel, M., and Durrant, J.R.: Back electron–hole recombination in hematite photoanodes for water splitting. J. Am. Chem. Soc. 136, 2564 (2014).Google Scholar
32.Barroso, M., Pendlebury, S.R., Cowan, A.J., and Durrant, J.R.: Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724 (2013).CrossRefGoogle Scholar
33.Tilley, S.D., Cornuz, M., Sivula, K., and Grätzel, M.: Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405 (2010).CrossRefGoogle ScholarPubMed
34.Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).CrossRefGoogle Scholar
35.Chen, Z.D., Dinh, H.N., and Miller, E.: Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols (Springer, New York, NY, 2013).Google Scholar
36.Salvador, P.: Semiconductors’ photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J. Phys. Chem. B 105, 6128 (2001).CrossRefGoogle Scholar
37.Rioult, M., Magnan, H., Stanescu, D., and Barbier, A.: Single crystalline hematite films for solar water splitting: Ti-doping and thickness effects. J. Phys. Chem. C 118, 3007 (2014).Google Scholar