Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T05:56:59.086Z Has data issue: false hasContentIssue false

In situ investigation of halide incorporation into perovskite solar cells

Published online by Cambridge University Press:  10 July 2017

Jeffery A. Aguiar*
Affiliation:
Materials Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA Materials Science and Engineering, University of Utah, Salt Lake City, UT 84122, USA Fuel Design and Development Directorate, Idaho National Laboratory, Idaho Falls, ID 83401, USA
Nooraldeen R. Alkurd
Affiliation:
Advanced Materials Institute, University of New Orleans, New Orleans, LA 70122, USA Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA
Sarah Wozny
Affiliation:
Advanced Materials Institute, University of New Orleans, New Orleans, LA 70122, USA
Maulik K. Patel
Affiliation:
Department of Material Science and Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
Mengjin Yang
Affiliation:
Materials Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA
Weilie Zhou
Affiliation:
Advanced Materials Institute, University of New Orleans, New Orleans, LA 70122, USA
Mowafak Al-Jassim
Affiliation:
Materials Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA
Terry G. Holesinger
Affiliation:
Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Kai Zhu
Affiliation:
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
Joseph J. Berry
Affiliation:
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
*
Address all correspondence to Jeffery A. Aguiar Jeffery.Aguiar@inl.gov
Get access

Abstract

Here we report on the material chemistry following crystallization in the presence of water vapor of chlorinated formamidinium lead-triiodide (NH2CH = NH2PbI3−xClx) perovskite films. We found in-situ exposure to water vapor reduces, or possibly eliminates, the retention of chlorine (Cl) inside NH2CH = NH2PbI3−xClx crystals. There is a strong tendency toward Cl volatility, which indicates the sensitivity of these materials for their integration into solar cells. The requisite for additional efforts focused on the mitigation of water vapor is reported. Based on the in situ results, hot casting (<100 °C) in dry conditions demonstrates improved film coverage and Cl retention with efficiencies reaching 12.07%.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sawin, J.L. and Sverrisson, F.: Renewable 2014 Global Status Report (REN21 Secretariat, Paris, France, 2014).Google Scholar
2.Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).Google Scholar
3.Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).Google Scholar
4.Gratzel, M.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014).Google Scholar
5.Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., and Grätzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151 (2014).Google Scholar
6.Boix, P.P., Nonomura, K., Mathews, N., and Mhaisalkar, S.G.: Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17, 16 (2014).Google Scholar
7.Mitzi, D.B.: Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, in Progress in Inorganic Chemistry (UNEP, Paris, France, 2007), p. 1.Google Scholar
8.Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., and Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).Google Scholar
9.Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).Google Scholar
10.Zhao, Y. and Zhu, K.: Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 136, 12241 (2014).Google Scholar
11.Zhao, Y. and Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014).Google Scholar
12.Chen, Q., Zhou, H., Fang, Y., Stieg, A.Z., Song, T.-B., Wang, H.-H., Xu, X., Liu, Y., Lu, S., You, J., Sun, P., McKay, J., Goorsky, M.S., and Yang, Y.: The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 1, 7269 (2015).Google Scholar
13.Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., and McGehee, M.D.: Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613 (2015).Google Scholar
14.Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., and Han, H.: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).Google Scholar
15.Niu, G., Li, W., Meng, F., Wang, L., Dong, H., and Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014).Google Scholar
16.You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., and Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).Google Scholar
17.Christians, J.A., Miranda Herrera, P.A., and Kamat, P.V.: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015).Google Scholar
18.Wang, F., Yu, H., Xu, H., and Zhao, N.: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 1120 (2015).Google Scholar
19.Lv, S., Pang, S., Zhou, Y., Padture, N.P., Hu, H., Wang, L., Zhou, X., Zhu, H., Zhang, L., Huang, C., and Cui, G.: One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Clx) for mesoscopic perovskite-polymer solar cells. Phys. Chem. Chem. Phys. 16, 19206 (2014).Google Scholar
20.Unger, E.L., Bowring, A.R., Tassone, C.J., Pool, V., Gold-Parker, A., Cheacharoen, R., Stone, K.H., Hoke, E.T., Toney, M.F., and McGehee, M.D.: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 71587165 (2014).Google Scholar
21.Niu, G., Guo, X., and Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 89708980 (2015).Google Scholar
22.Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsøe, H., and Jacobsen, C.J.H.: Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001).Google Scholar
23.Alsem, D., Salmon, N.J., Unocic, R.R., Veith, G.M., and , K.L. More: in-situ liquid and gas transmission electron microscopy of nano-scale materials. Microsc. Microanal. 18(Supplement S2), 1158 (2012).Google Scholar
24.Aguiar, J.A., Wozny, S., Holesinger, T.G., Aoki, T., Patel, M.K., Yang, M., Berry, J.J., Al-Jassim, M., Zhou, W., and Zhu, K.: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372 (2016).Google Scholar
25.Aguiar, J.A., Wozny, S., Holesinger, T.G., Aoki, T., Patel, M.K., Yang, M., Berry, J.J., Al-Jassim, M., Zhou, W., and Zhu, K.: In situ investigation of the role of temperature on the formation and metastability of higher efficiency perovskite solar cells. Energy Environ. Sci. 9, 23722382 (2016).Google Scholar
26.Senga, R. and Suenaga, K.: Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015).Google Scholar
27.Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).Google Scholar
28.Grancini, G., Marras, S., Prato, M., Giannini, C., Quarti, C., De Angelis, F., De Bastiani, M., Eperon, G.E., Snaith, H.J., Manna, L., and Petrozza, A.: The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5, 3836 (2014).Google Scholar
29.Starr, D.E., Sadoughi, G., Handick, E., Wilks, R.G., Alsmeier, J.H., Kohler, L., Gorgoi, M., Snaith, H.J., and Bar, M.: Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment. Energy Environ. Sci. 8, 1609 (2015).Google Scholar
30.Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.-L., and Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015).Google Scholar
Supplementary material: File

Aguiar supplementary material

Aguiar supplementary material 1

Download Aguiar supplementary material(File)
File 3.5 MB