Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T08:27:36.107Z Has data issue: false hasContentIssue false

Non-doped and unsorted single-walled carbon nanotubes as carrier-selective, transparent, and conductive electrode for perovskite solar cells

Published online by Cambridge University Press:  08 August 2018

Takahiro Sakaguchi
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
Il Jeon
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
Takaaki Chiba
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
Ahmed Shawky
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan Nanomaterials and Nanotechnology Department, Advanced Materials Division, Central Metallurgical Research and Development Institute, P. O. Box 87, Helwan 11421, Cairo, Egypt
Rong Xiang
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
Shohei Chiashi
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
Esko I. Kauppinen
Affiliation:
Department of Applied Physics, School of Science, Aalto University 15100, FI-00076 Aalto, Finland
Nam-Gyu Park*
Affiliation:
School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
Yutaka Matsuo*
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Shigeo Maruyama*
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan Energy NanoEngineering Laboratory, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba 205-8564, Japan
*
Address all correspondence to Nam-Gyu Park at npark@skku.edu, Yutaka Matsuo at matsuo@photon.t.u-tokyo.ac.jp, Shigeo Maruyama at maruyama@photon.t.u-tokyo.ac.jp
Address all correspondence to Nam-Gyu Park at npark@skku.edu, Yutaka Matsuo at matsuo@photon.t.u-tokyo.ac.jp, Shigeo Maruyama at maruyama@photon.t.u-tokyo.ac.jp
Address all correspondence to Nam-Gyu Park at npark@skku.edu, Yutaka Matsuo at matsuo@photon.t.u-tokyo.ac.jp, Shigeo Maruyama at maruyama@photon.t.u-tokyo.ac.jp
Get access

Abstract

Lead halide perovskite solar cells (PSCs) with a structure of glass/FTO/TiO2/CH3NH3PbI3 with single-walled carbon nanotubes (SWNT) as the transparent top electrodes, followed by polymethyl methacrylate (PMMA) over-coating were fabricated. The SWNT-based PSCs do not require expensive metal electrodes and hole-transporting materials yet produce a decent power conversion efficiency of 11.8%, owing to the densifying effect of SWNTs by PMMA. The resulting devices demonstrate reduced hysteresis, improved stability, and increased power conversion efficiency.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

1.Jorio, A., Dresselhaus, G., and Dresselhaus, M.S.: Carbon Nanotubes—Advanced Topics in the Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2008).Google Scholar
2.Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).Google Scholar
3.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).Google Scholar
4.Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., and Park, N.-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).Google Scholar
5.Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., and Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017).Google Scholar
6.Jeon, I., Chiba, T., Delacou, C., Guo, Y., Kaskela, A., Reynaud, O., Kauppinen, E.I., Maruyama, S., and Matsuo, Y.: Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15, 6665 (2015).Google Scholar
7.Ahn, N., Jeon, I., Yoon, J., Kauppinen, E.I., Matsuo, Y., Maruyama, S., and Choi, M.: Carbon-sandwiched perovskite solar cell. J. Mater. Chem. A 6, 1382 (2018).Google Scholar
8.Li, Z., Kulkarni, S.A., Boix, P.P., Shi, E., Cao, A., Fu, K., Batabyal, S.K., Zhang, J., Xiong, Q., Wong, L.H., Mathews, N., and Mhaisalkar, S.G.: Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797 (2014).Google Scholar
9.Aitola, K., Sveinbjörnsson, K., Correa-Baena, J.-P., Kaskela, A., Abate, A., Tian, Y., Johansson, E.M.J., Grätzel, M., Kauppinen, E.I., Hagfeldt, A., and Boschloo, G.: Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ. Sci. 9, 461 (2016).Google Scholar
10.Chen, H. and Yang, S.: Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv. Mater. 29, 1603994 (2017).Google Scholar
11.Wu, Z., Song, T., and Sun, B.: Carbon-based materials used for perovskite solar cells. Chem. Nano Mat. 3, 75 (2017).Google Scholar
12.Jeon, I., Matsuo, Y., and Maruyama, S.: Single-walled carbon nanotubes in solar cells. Top. Curr. Chem. 376, 1 (2018).Google Scholar
13.Schulz, P., Dowgiallo, A.-M., Yang, M., Zhu, K., Blackburn, J.L., and Berry, J.J.: Charge transfer dynamics between carbon nanotubes and hybrid organic metal halide perovskite films. J. Phys. Chem. Lett. 7, 418 (2016).Google Scholar
14.Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., and Park, N.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis Base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015).Google Scholar
15.Nasibulin, A.G., Kaskela, A., Mustonen, K., Anisimov, A.S., Ruiz, V., Kivistö, S., Rackauskas, S., Timmermans, M.Y., Pudas, M., Aitchison, B., Kauppinen, M., Brown, D.P., Okhotnikov, O.G., and Kauppinen, E.I.: Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5, 3214 (2011).Google Scholar
16.Jeon, I., Seo, S., Sato, Y., Delacou, C., Anisimov, A., Suenaga, K., Kauppinen, E.I., Maruyama, S., and Matsuo, Y.: Perovskite solar cells using carbon nanotubes both as cathode and as anode. J. Phys. Chem. C 121, 25743 (2017).Google Scholar
17.Jeon, I., Delacou, C., Kaskela, A., Kauppinen, E.I., Maruyama, S., and Matsuo, Y.: Metal-electrode-free window-like organic solar cells with p-doped carbon nanotube thin-film electrodes. Sci. Rep. 6, 31348 (2016).Google Scholar
18.Laban, W.A. and Etgar, L.: Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249 (2013).Google Scholar
19.Jeon, I., Cui, K., Chiba, T., Anisimov, A., Nasibulin, A.G., Kauppinen, E.I., Maruyama, S., and Matsuo, Y.: Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J. Am. Chem. Soc. 137, 7982 (2015).Google Scholar
20.Ahn, N., Kwak, K., Jang, M.S., Yoon, H., Lee, B.Y., Lee, J., Pikhitsa, P.V, Byun, J., and Choi, M.: Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016).Google Scholar
21.Gan, X., Lv, R., Zhu, H., Ma, L.-P., Wang, X., Zhang, Z., Huang, Z.-H., Zhu, H., Ren, W., Terrones, M., and Kang, F.: Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells. J. Mater. Chem. A 4, 13795 (2016).Google Scholar
22.Yue, G., Chen, D., Wang, P., Zhang, J., Hu, Z., and Zhu, Y.: Low-temperature prepared carbon electrodes for hole-conductor-free mesoscopic perovskite solar cells. Electrochim. Acta 218, 84 (2016).Google Scholar
23.Li, Z., Boix, P.P., Xing, G., Fu, K., Kulkarni, S.A., Batabyal, S.K., Xu, W., Cao, A., Sum, T.C., Mathews, N., and Wong, L.H.: Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale 8, 6352 (2016).Google Scholar
24.Pirkle, A., Chan, J., Venugopal, A., Hinojos, D., Magnuson, C.W., McDonnell, S., Colombo, L., Vogel, E.M., Ruoff, R.S., and Wallace, R.M.: The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).Google Scholar
25.Farmer, D.B., Chiu, H.-Y., Lin, Y.-M., Jenkins, K.A., Xia, F., and Avouris, P.: Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474 (2009).Google Scholar
26.Jeon, I., Yoon, J., Ahn, N., Atwa, M., Delacou, C., Anisimov, A., Kauppinen, E.I., Choi, M., Maruyama, S., and Matsuo, Y.: Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells. J. Phys. Chem. Lett. 8, 5395 (2017).Google Scholar
27.Dabera, G.D.M.R., Jayawardena, K.D.G.I., Prabhath, M.R.R., Yahya, I., Tan, Y.Y., Nismy, N.A., Shiozawa, H., Sauer, M., Ruiz-Soria, G., Ayala, P., Stolojan, V., Adikaari, A.A.D.T., Jarowski, P.D., Pichler, T., and Silva, S.R.P.: Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics. ACS Nano 7, 556 (2013).Google Scholar
28.Cui, K. and Maruyama, S.: Carbon nanotube-silicon solar cells: improving performance for next-generation energy systems. IEEE Nanotechnol. Mag. 10, 34 (2016).Google Scholar
29.Li, R., Di, J., Yong, Z., Sun, B., and Li, Q.: Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement. J. Mater. Chem. A 2, 4140 (2014).Google Scholar
30.Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., and Park, N.-G.: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011).Google Scholar
Supplementary material: File

Sakaguchi et al. supplementary material

Sakaguchi et al. supplementary material 1

Download Sakaguchi et al. supplementary material(File)
File 845.1 KB