Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T19:09:38.067Z Has data issue: false hasContentIssue false

Optimization of photoelectrochemical performance of Ag2S/TiO2 interface by successive ionic layer adsorption and reaction

Published online by Cambridge University Press:  11 February 2020

Xinhua Zheng
Affiliation:
Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing Institute of Petrochemical Technology, Beijing102617, China
Shikai Liu*
Affiliation:
School of Material Science and Engineering, Henan University of Technology, Zhengzhou450000, China
Yanhong Gu*
Affiliation:
Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing Institute of Petrochemical Technology, Beijing102617, China
Subhabrata Das
Affiliation:
Langmuir Center of Colloids and Interfaces, Columbia University in the City of New York, 500 W. 120th St, Mudd, New York, NY10027, USA
Jie Zhao
Affiliation:
Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development, Beijing Institute of Petrochemical Technology, Beijing102617, China
Yueyang Gao
Affiliation:
School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang110168, China
*
Address all correspondence to Shikai Liu at shikai_liu@haut.edu.cn and Yanhong Gu at guyanhong@bipt.edu.cn
Address all correspondence to Shikai Liu at shikai_liu@haut.edu.cn and Yanhong Gu at guyanhong@bipt.edu.cn
Get access

Abstract

The narrow bandgap of Ag2S quantum dots was used to decorate TiO2 nanotube arrays (TiO2 NTAs) by the successive ionic layer adsorption and reaction (SILAR) method to enhance its photoelectrochemical performance. The micromorphology of the photoanode films prepared by the SILAR under different parameters (including different cycle times, capillary spot sample, and ultrasound-assisted) was systematically analyzed. The photoanode film Ag2S/TiO2 prepared by the SILAR under the ultrasound-assisted method shows Ag2S evenly distributed in TiO2 NTAs. At the same time, the corresponding photoabsorption range has been extended to the visible area, while the photocurrent density and photoconversion efficiency have been increased to ~1.8 mA/cm2 and 0.6%, respectively.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ning, W., Ying, L., Zhang, T.-T., Liang, J., and Wang, D.-A.: Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light. Mater. Lett. 185, 81 (2016).Google Scholar
2.Wang, Q.-Y., Qiao, J.-L., and Zhou, J.: Fabrication of Ag@Ag2S core-shell nanoparticles sensitized TiO2 nanotube arrays with high photoelectrochemical properties. ECS J. Solid State Sci. Technol. 3, Q157 (2014).CrossRefGoogle Scholar
3.Cao, D.-W., Nasori, N., Wang, Z.-J., Wen, L.-Y., Xu, R., Mi, Y., and Lei, Y.: Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. Appl. Catal. B Environ. 198, 398 (2016).CrossRefGoogle Scholar
4.Jiang, D., Yu, H., and Yu, H.-B.: Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light. Physica E 85, 1 (2017).CrossRefGoogle Scholar
5.Kawamura, G., Ohmi, H., Tan, W.-K., Lockman, Z., Muto, H., and Matsuda, A.: Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells. Nanoscale Res. Lett. 10, 1 (2015).CrossRefGoogle ScholarPubMed
6.Liu, C.-B., Cao, C.-H., Luo, X.-B., and Luo, S.-L.: Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst. J. Hazard. Mater. 285, 319 (2015).CrossRefGoogle ScholarPubMed
7.Yang, W.-G., Yu, Y.-H., Starr, M.B., Yin, X., Li, Z.-D., Kvit, A., Wang, S.-F., Zhao, P., and Wang, X.-D.: Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15, 7574 (2015).CrossRefGoogle ScholarPubMed
8.Zhong, J.-S., Wang, Q.-Y., and Yu, Y.-F.: Solvothermal preparation of Ag nanoparticles sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance. J. Alloy. Compd. 620, 168 (2015).CrossRefGoogle Scholar
9.Abbasi, A. and Sardroodi, J. J.: Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput. Theor. Chem. 1095, 15 (2016).CrossRefGoogle Scholar
10.Zheng, L.-X., Han, S.-C., Liu, H., Yu, P.-P., and Fang, X.-S.: Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527 (2016).CrossRefGoogle ScholarPubMed
11.Yu, X., Zhang, J., Zhao, Z.-H., Guo, W.-B., Qiu, J.-C., Mou, X.-N., Li, A.-X., Claverie, J.P., and Liu, H.: NiO-TiO2 p-n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy 16, 207 (2015).CrossRefGoogle Scholar
12.Ning, X.-B., Ge, S.-S., Wang, X.-T., Li, H., Li, X.-R., Liu, X.-Q., and Huang, Y.-L.: Preparation and photocathodic protection property of Ag2S-TiO2 composites. J. Alloy. Compd. 719, 2325 (2017).CrossRefGoogle Scholar
13.Mustakim, N.S.M., Sepeai, S., Ludin, N.A., Mat Teridi, M.A., and Ibrahim, M.A.: Properties of nanostructured rutile titanium dioxide (TiO2) thin film deposited with silver sulfide (Ag2S) quantum dots as photoanode for solar photovoltaic. Solid State Phenom. 290, 329 (2019).CrossRefGoogle Scholar
14.Zhang, J., Hu, J., Zhu, Y.-F., Liu, Q., Zhang, H., Du, R.-G., and Lin, C.-J.: Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Corros. Sci. 99, 118 (2015).CrossRefGoogle Scholar
15.Liu, Z., Ji, G., Guan, D., Wang, B., and Wu, X.: Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays. J. Colloid Interface Sci. 457, 1 (2015).CrossRefGoogle ScholarPubMed
16.Lin, H., Mao, Z., Zhou, N.-J., Wang, M., Li, L., and Li, Q.: Fabrication of CdS quantum dots sensitized TiO2 nanowires/nanotubes arrays and their photoelectrochemical properties. SN Appl. Sci. 1, 5 (2019).CrossRefGoogle Scholar
17.Wang, Q., Qiao, J., and Zhou, J.: Fabrication of Ag@Ag2S core-shell nanoparticles sensitized TiO2 nanotube arrays with high photoelectrochemical properties. Phys. Rev. Lett. 3, Q157 (2014).Google Scholar
18.Wang, Q.-Y., Jin, R.-C., Yin, C.-L., Wang, M.-J., Wang, J.-F., and Gao, S.-M.: Photoelectrocatalytic removal of dye and Cr (VI) pollutants with Ag2S and Bi2S3 co-sensitized TiO2 nanotube arrays under solar irradiation. Sep. Purif. Technol. 172, 303 (2017).CrossRefGoogle Scholar
19.Liu, Z.-Q, Guan, D.-B., Ji, G.-Q., Wu, X.-L., and Wang, B.: Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays. J. Colloid Interface Sci. (2015).CrossRefGoogle ScholarPubMed
20.Pawar, S.A., Patil, D.S., Kim, J.H., Patil, P.S., and Shin, J.C.: Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure. Opt. Mater. 203, 74 (2016).Google Scholar
21.Chen, X., Liu, F., Yan, X., Yang, Y., Chen, Q., Wan, J., Tian, L., Xia, Q., and Chen, X.: Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles: visible-light photocatalytic activity, photostability, and charge transfer. Chem. Eur. J. 21, 25 (2015).CrossRefGoogle ScholarPubMed
22.Liu, T.-Y., Liu, B., Yang, L.-F., Ma, X.-L., and Wang, Y.-H.: RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B Environ. 204, 593 (2016).CrossRefGoogle Scholar