Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-13T21:16:48.275Z Has data issue: false hasContentIssue false

Perovskite solar cells based on hole-transporting conjugated polymers by direct arylation polycondensation

Published online by Cambridge University Press:  09 July 2018

Wei Li
Affiliation:
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Takehiko Mori
Affiliation:
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
Tsuyoshi Michinobu*
Affiliation:
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
*
Address all correspondence to Tsuyoshi Michinobu at michinobu.t.aa@m.titech.ac.jp
Get access

Abstract

Direct arylation polycondensation (DArP) is an emerging synthetic method of producing conjugated polymers in an environmentally benign and cost-effective manner. We now report the synthesis of hole-transporting conjugated polymers, namely, DPP-OMe (Mn = 7.9 kg/mol) and DPP-F (Mn = 12.6 kg/mol), under microwave-assisted DArP conditions. These two polymers and the previously synthesized 3,6-Cbz-EDOT were evaluated as hole-transporting materials in mesoscopic perovskite solar cells. 3,6-Cbz-EDOT synthesized by DArP exhibited higher hole mobility and better photovoltaic properties than that synthesized by the Stille polycondensation. Moreover, chemical dopants improved the short-circuit current density (Jsc) and fill factor.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shirota, Y. and Kageyama, H.: Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107, 953 (2007).Google Scholar
2.Wang, J., Liu, K., Ma, L., and Zhan, X.: Triarylamine: versatile platform for organic, dye-sensitized, and perovskite solar cells. Chem. Rev. 116, 14675 (2016).Google Scholar
3.Calió, L., Kazim, S., Grätzel, M., and Ahmad, S.: Hole-transporting materials for perovskite solar cells. Angew. Chem. Int. Ed. 55, 14522 (2016).Google Scholar
4.Ameen, S., Rub, M.A., Kosa, S.A., Alamry, K.A., Akhtar, M.S., Shin, H.-S., Seo, H.-K., Asiri, A.M., and Nazeeruddin, M.K.: Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem. 9, 10 (2016).Google Scholar
5.Agarwala, P. and Kabra, D.: A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5, 1348 (2017).Google Scholar
6.Krishna, A. and Grimsdale, A.C.: Hole transporting materials for mesoscopic perovskite solar cells—towards a rational design? J. Mater. Chem. A 5, 16446 (2017).Google Scholar
7.Rodríguez-Seco, C., Cabau, L., Vidal-Ferran, A., and Palomares, E.: Advances in the synthesis of small molecules as hole transport materials for lead halide perovskite solar cells. Acc. Chem. Res. 51, 869 (2018).Google Scholar
8.Zhou, W., Wen, Z., and Gao, P.: Less is more: dopant-free hole transporting materials for high-efficiency perovskite solar cells. Adv. Energy Mater. 8, 1702512 (2018).Google Scholar
9.Tao, Y., Yang, C., and Qin, J.: Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 40, 2943 (2011).Google Scholar
10.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., and Khaffaf, S.M.: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199 (2003).Google Scholar
11.Horie, M., Luo, Y., Morrison, J.J., Majewski, L.Z., Song, A., Saunders, B.R., and Turner, M.L.: Triarylamine polymers by microwave-assisted polycondensation for use in organic field-effect transistors. J. Mater. Chem. 18, 5230 (2008).Google Scholar
12.Michinobu, T., Kumazawa, H., Otsuki, E., Usui, H., and Shigehara, K.: Synthesis and properties of nitrogen-linked poly(2,7-carbazole)s as hole-transport material for organic light emitting materials. J. Polym. Sci. Part A 47, 3880 (2009).Google Scholar
13.Tsuchiya, K., Shimomura, T., and Ogino, K.: Preparation of diblock copolymer based on poly(4-n-butyltriphenylamine) via palladium coupling polymerization. Polymer 50, 95 (2009).Google Scholar
14.Tsuchiya, K., Sakakura, T., and Ogino, K.: Synthesis of triphenylamine copolymers and effect of their chemical structures on physical properties. Macromolecules 44, 5200 (2011).Google Scholar
15.Huang, L.-T., Yen, H.-J., and Liou, G.-S.: Substituent effect on electrochemical and electrochromic behaviors of ambipolar aromatic polyimides based on aniline derivatives. Macromolecules 44, 9595 (2011).Google Scholar
16.Iwan, A. and Sek, D.: Polymers with triphenylamine units: photonic and electroactive materials. Prog. Polym. Sci. 36, 1277 (2011).Google Scholar
17.Ko, Y.-G., Kwon, W., Yen, H.-J., Chang, C.-W., Kim, D.M., Kim, K., Hahm, S.G., Lee, T.J., Liou, G.-S., and Ree, M.: Various digital memory behaviors of functional aromatic polyimides based on electron donor and acceptor substituted triphenylamines. Macromolecules 45, 3749 (2012).Google Scholar
18.Michinobu, T., Seo, C., Noguchi, K., and Mori, T.: Effects of click postfunctionalization on thermal stability and field effect transistor performances of aromatic polyamines. Polym. Chem. 3, 1427 (2012).Google Scholar
19.Chen, C.-J., Hu, Y.-C., and Liou, G.-S.: Linkage and acceptor effects on diverse memory behavior of triphenylamine-based aromatic polymers. Polym. Chem. 4, 4162 (2013).Google Scholar
20.Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M., Graetzel, M., Nazeeruddin, M.K., and Bolink, H.J.: Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8, 128 (2014).Google Scholar
21.Yen, H.-J., Lin, J.-H., Su, Y.O., and Liou, G.-S.: Novel triarylamine-based aromatic polyamides bearing secondary amines: synthesis and redox potential inversion characteristics induced by pyridines. J. Mater. Chem. C 4, 10381 (2016).Google Scholar
22.Suwa, K., Tanaka, S., Oyaizu, K., and Nishide, H.: Arylamine polymers prepared via facile paraldehyde addition condensation: an effective hole-transporting materials for perovskite solar cells. Polym. Int. 67, 670 (2018).Google Scholar
23.Bian, L., Zhu, E., Tang, J., Tang, W., and Zhang, F.: Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Prog. Polym. Sci. 37, 1292 (2012).Google Scholar
24.Liu, C., Wang, K., Gong, X., and Heeger, A.J.: Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 45, 4825 (2016).Google Scholar
25.Wang, Y. and Michinobu, T.: Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor-acceptor polymers in organic electronics. J. Mater. Chem. C 4, 6200 (2016).Google Scholar
26.Ying, L., Huang, F., and Bazan, G.C.: Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nat. Commun. 8, 14047 (2017).Google Scholar
27.Li, Y., Gu, M., Pan, Z., Zhang, B., Yang, X., Gu, J., and Chen, Y.: Indacenodithiophene: a promising building block for high performance polymer solar cells. J. Mater. Chem. A 5, 10798 (2017).Google Scholar
28.Sonar, P., Singh, S.P., Li, Y., Soh, M.S., and Dodabalapur, A.: A low-bandgap diketopyrrolopyrrole-benzothiadiazole-based copolymer for high-mobility ambipolar organic thin-film transistors. Adv. Mater. 22, 5409 (2010).Google Scholar
29.Yi, Z., Wang, S., and Liu, Y.: Design of high-mobility diketopyrrolopyrrole-based π-conjugated copolymers for organic thin-film transistors. Adv. Mater. 27, 3589 (2015).Google Scholar
30.Li, W., Hendriks, K.H., Wienk, M.M., and Janssen, R.A.J.: Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res. 49, 78 (2016).Google Scholar
31.Facchetti, A., Vaccaro, L., and Marrochi, A.: Semiconducting polymers prepared by direct arylation polycondensation. Angew. Chem. Int. Ed. 51, 3520 (2012).Google Scholar
32.Mercier, L.G. and Leclerc, M.: Direct (hetero)arylation: a new tool for polymer chemists. Acc. Chem. Res. 46, 1597 (2013).Google Scholar
33.Kowalski, S., Allard, S., Zilberberg, K., Riedl, T., and Scherf, U.: Direct arylation polycondensation as simplified alternative for the synthesis of conjugated (co)polymers. Prog. Polym. Sci. 38, 1805 (2013).Google Scholar
34.Rudenko, A.E. and Thompson, B.C.: Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. J. Polym. Sci. Part A 53, 135 (2015).Google Scholar
35.Pouliot, J.-R., Grenier, F., Blaskovits, J.T., Beaupré, S., and Leclerc, M.: Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225 (2016).Google Scholar
36.Bura, T., Blaskovits, J.T., and Leclerc, M.: Direct (hetero)arylation polymerization: trends and perspectives. J. Am. Chem. Soc. 138, 10056 (2016).Google Scholar
37.Suraru, S.-L., Lee, J.A., and Luscombe, C.K.: C-H arylation in the synthesis of π-conjugated polymers. ACS Macro Lett. 5, 724 (2016).Google Scholar
38.Bohra, H. and Wang, M.: Direct C-H arylation; a “greener” approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 5, 11550 (2017).Google Scholar
39.Yu, S., Liu, F., Yu, J., Zhang, S., Cabanetos, C., Gao, Y., and Huang, W.: Eco-friendly direct (hetero)-arylation polymerization: scope and limitation. J. Mater. Chem. C 5, 29 (2017).Google Scholar
40.Berrouard, P., Najari, A., Pron, A., Gendron, D., Morin, P.-O., Pouliot, J.-R., Veilleux, J., and Leclerc, M.: Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew. Chem. Int. Ed. 51, 2068 (2012).Google Scholar
41.Chang, S.-W., Waters, H., Kettle, J., Kuo, Z.-R., Li, C.-H., Yu, C.-Y., and Horie, M.: Pd-catalysed direct arylation polymerisation for synthesis of low-bandgap conjugated polymers and photovoltaic performance. Macromol. Rapid Commun. 33, 1927 (2012).Google Scholar
42.Gao, Y., Zhang, X., Tian, H., Zhang, J., Yang, D., Geng, Y., and Wang, F.: High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation. Adv. Mater. 27, 6753 (2015).Google Scholar
43.Song, H., Deng, Y., Gao, Y., Jiang, Y., Tian, H., Yan, D., Gen, Y., and Wang, F.: Donor-acceptor conjugated polymers based on indacenodithiophene derivative bridged diketopyrrolopyrroles: synthesis and semiconducting properties. Macromolecules 50, 2344 (2017).Google Scholar
44.Saito, H., Chen, J., Kuwabara, J., Yasuda, T., and Kanbara, T.: Facile one-pot access to π-conjugated polymers via sequential bromination/direct arylation polycondensation. Polym. Chem. 8, 3006 (2017).Google Scholar
45.Li, Y., Tatum, W.J.K., Onorato, J.W., Barajas, S.D., Yang, Y.Y., and Luscombe, C.K.: An indacenodithiophene-based semiconducting polymer with high ductility for stretchable organic electronics. Polym. Chem. 8, 5185 (2017).Google Scholar
46.Kuwabara, J., Yasuda, T., Choi, S.J., Lu, W., Yamazaki, K., Kagaya, S., Han, L., and Kanbara, T.: Direct arylation polycondensation: a promising method for the synthesis of highly pure, high-molecular-weight conjugated polymers needed for improving the performance of organic photovoltaics. Adv. Funct. Mater. 24, 3226 (2014).Google Scholar
47.Li, W. and Michinobu, T.: Structural effects of dibromocarbazoles on direct arylation polycondensation with 3,4-ethylenedioxythiophene. Polym. Chem. 7, 3165 (2016).Google Scholar
48.Li, W., Otsuka, M., Kato, T., Wang, Y., Mori, T., and Michinobu, T.: 3,6-Carbazole vs 2,7-carbazole: a comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells. Beilstein J. Org. Chem. 12, 1401 (2016).Google Scholar
49.Pouliot, J.-R., Sun, B., Leduc, M., Najari, A., Li, Y., and Leclerc, M.: A high mobility DPP-based polymer obtained via direct (hetero)arylation polymerization. Polym. Chem. 6, 278 (2015).Google Scholar
50.Wang, K., Wang, G., and Wang, M.: Balanced ambipolar poly(diketopyrrolopyrrole-alt-tetrafluorobenzene) semiconducting polymers synthesized via direct arylation polymerization. Macromol. Rapid Commun. 36, 2162 (2015).Google Scholar
51.Gawande, M.B., Shelke, S.N., Zboril, R., and Varma, R.S.: Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 47, 1338 (2014).Google Scholar
52.Mueller, C.J., Gann, E., Singh, C.R., Thelakkat, M., and McNeill, C.R.: Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer. Chem. Mater. 28, 7088 (2016).Google Scholar
53.Wang, Y., Hasegawa, T., Matsumoto, H., Mori, T., and Michinobu, T.: Rational design of high-mobility semicrystalline conjugated polymers with tunable charge polarity: beyond benzobisthiadiazole-based polymers. Adv. Funct. Mater. 27, 1604608 (2017).Google Scholar
54.Wang, Y., Hasegawa, T., Matsumoto, H., Mori, T., and Michinobu, T.: High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers. Adv. Mater. 30, 1707164 (2018).Google Scholar
55.Lee, I., Yun, J.H., Son, H.J., and Kim, T.-S.: Accelerated degradation due to weakened adhesion from Li-TFSi additives in perovskite solar cells. ACS Appl. Mater. Interfaces 9, 7029 (2017).Google Scholar
56.Schölin, R., Karlsson, M.H., Eriksson, S.K., Siegbahn, H., Johansson, E.M.J., and Rensmo, H.: Energy level shifts in spiro-OMeTAD molecular thin films when adding Li-TFSI. J. Phys. Chem. C 116, 26300 (2012).Google Scholar
57.Habisreutinger, S.N., Noel, N.K., Snaith, H.J., and Nicholas, R.J.: Investigating the role of 4-tert butylpyridine in perovskite solar cells. Adv. Energy Mater. 7, 1601079 (2017).Google Scholar
58.Juarez-Perez, E.J., Leyden, M.R., Wang, S., Ono, L.K., Hawash, Z., and Qi, Y.: Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer. Chem. Mater. 28, 5702 (2018).Google Scholar
59.Xiao, Y., Han, G., Wu, J., and Lin, J.-Y.: Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material. J. Power Sources 306, 171 (2016).Google Scholar
60.Abate, A., Leijtens, T., Pathak, S., Teuscher, J., Avolio, R., Errico, M.E., Kirkpatrik, J., Ball, J.M., Docampo, P., McPherson, I., and Snaith, H.J.: Lithium salts as “redox active’’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572 (2013).Google Scholar
Supplementary material: PDF

Li et al. supplementary material

Li et al. supplementary material 1

Download Li et al. supplementary material(PDF)
PDF 657.7 KB