Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-16T10:32:19.727Z Has data issue: false hasContentIssue false

Sodium-doped oriented zinc oxide nanorod arrays: insights into their aqueous growth design, crystal structure, and optical properties

Published online by Cambridge University Press:  26 March 2018

Amir Hassanpour
Affiliation:
Department of Physics, Concordia University, Montreal H4B 1R6, Canada Institut National de la Recherche Scientifique, Centre Énérgie, Matériaux, Télécommunications 1650, boulevard Lionel-Boulet, Varennes J3X 1S2, Canada International Research Center for Renewable Energy (IRCRE), School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Shaohua Shen
Affiliation:
International Research Center for Renewable Energy (IRCRE), School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
Pablo Bianucci*
Affiliation:
Department of Physics, Concordia University, Montreal H4B 1R6, Canada
*
Address all correspondence to Pablo Bianucci at pablo.bianucci@concordia.ca
Get access

Abstract

Cation doping is a practical way of engineering the optical properties of one-dimensional semiconductor nanomaterials, such as their band gap. We have grown zinc oxide (ZnO) nanorods doped with sodium cations (Na+) using a hydrothermal method at temperatures as low as 60 °C. We have investigated the effect of different concentrations of Na+ on structural and optical properties and morphology of the ZnO nanostructures. We have also simulated and discussed the chemical route of formation of doped and undoped ZnO nanorods. We found that, for low-temperature hydrothermal doping of ZnO nanorods with Na+, the optimum concentration ratio of zinc to sodium precursors is 1:10.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hsu, C.L. and Chang, S.J.: Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application. Small 10, 4562 (2014).CrossRefGoogle ScholarPubMed
2.Shaban, M. and El Sayed, A.: Effects of lanthanum and sodium on the structural, optical and hydrophilic properties of sol–gel derived ZnO films: a comparative study. Mater. Sci. Semicond. Process. 41, 323 (2016).CrossRefGoogle Scholar
3.Lee, E.-C. and Chang, K.: Possible p-type doping with group-I elements in ZnO. Phys. Rev. B 70, 115210 (2004).CrossRefGoogle Scholar
4.Polat, İ.: Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 25, 3721 (2014).CrossRefGoogle Scholar
5.Lee, W.C., Canciani, G.E., Alwhshe, B.O., and Chen, Q.: Enhanced photoelectrochemical water oxidation by Zn x M y O (M = Ni, Co, K, Na) nanorod arrays. Int. J. Hydrog. Energy 41, 123 (2016).CrossRefGoogle Scholar
6.Wu, C. and Huang, Q.: Synthesis of Na-doped ZnO nanowires and their photocatalytic properties. J. Lumin. 130, 2136 (2010).CrossRefGoogle Scholar
7., J., Huang, K., Chen, X., Zhu, J., Meng, F., Song, X., and Sun, Z.: Enhanced photo-induced hydrophilicity of the sol–gel-derived ZnO thin films by Na-doping. Appl. Surf. Sci. 257, 2086 (2011).CrossRefGoogle Scholar
8.Hassanpour, A., Guo, P., Shen, S., and Bianucci, P.: The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. Nanotechnology 28, 435707 (2017).CrossRefGoogle ScholarPubMed
9.Yue, L., Zhang, Z., Ma, Y., and Zhang, W.: Effect of Na doping on the nanostructures and electrical properties of ZnO nanorod arrays. J. Nanomater. 2016, 3040536 (2016).CrossRefGoogle Scholar
10.Jayanthi, K., Chawla, S., Joshi, A.G., Khan, Z.H., and Kotnala, R.: Fabrication of luminescent, magnetic hollow core nanospheres and nanotubes of Cr-doped ZnO by inclusive coprecipitation method 1. J. Phys. Chem. C 114, 18429 (2010).CrossRefGoogle Scholar
11.Yamabi, S. and Imai, H.: Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12, 3773 (2002).CrossRefGoogle Scholar
12.Greene, L.E., Yuhas, B.D., Law, M., Zitoun, D., and Yang, P.: Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535 (2006).CrossRefGoogle ScholarPubMed
13.Ko, W., Lee, S., Baek, G., and Hong, J.P.: Na mole concentration dependence on optical p-type behaviors of Na-doped ZnO nanowires. Curr. Appl. Phys. 14, S103 (2014).CrossRefGoogle Scholar
14.Gu, W., Zhang, W., Li, X., Zhu, H., Wei, J., Li, Z., Shu, Q., Wang, C., Wang, K., Shen, W., Kang, F., and Wu, D.: Graphene sheets from worm-like exfoliated graphite. J. Mater. Chem. 19, 3367 (2009).CrossRefGoogle Scholar
15.Wang, L., Wu, F., Tian, D., Li, W., Fang, L., Kong, C., and Zhou, M.: Effects of Na content on structural and optical properties of Na-doped ZnO thin films prepared by sol–gel method. J. Alloys Compd. 623, 367 (2015).CrossRefGoogle Scholar
16.Ye, Z., Wang, T., Wu, S., Ji, X., and Zhang, Q.: Na-doped ZnO nanorods fabricated by chemical vapor deposition and their optoelectrical properties. J. Alloys Compd. 690, 189 (2017).CrossRefGoogle Scholar
17.Wang, Y., Luo, X., Tseng, L.-T., Ao, Z., Li, T., Xing, G., Bao, N., Suzukiis, K., Ding, J., and Li, S.: Ferromagnetism and crossover of positive magnetoresistance to negative magnetoresistance in Na-doped ZnO. Chem. Mater. 27, 1285 (2015).CrossRefGoogle Scholar
18.Chien, C.-T., Wu, M.-C., Chen, C.-W., Yang, H.-H., Wu, J.-J., Su, W.-F., Lin, C.-S., and Chen, Y.-F.: Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod. Appl. Phys. Lett. 92, 223102 (2008).CrossRefGoogle Scholar
19.Tabib, A., Bouslama, W., Sieber, B., Addad, A., Elhouichet, H., Férid, M., and Boukherroub, R.: Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis. Appl. Surf. Sci. 396, 1528 (2017).CrossRefGoogle Scholar
20.Kumar, S. and Thangavel, R.: Structural and optical properties of Na doped ZnO nanocrystalline thin films synthesized using sol–gel spin coating technique. J. Solgel Sci. Technol. 67, 50 (2013).CrossRefGoogle Scholar
21.Zhang, H.-W., Wei, Z.-R., Li, Z.-Q., and Dong, G.-Y.: Room-temperature ferromagnetism in Fe-doped, Fe-and Cu-codoped ZnO diluted magnetic semiconductor. Mater. Lett. 61, 3605 (2007).CrossRefGoogle Scholar
22.Boqian, Y., Peterxian, F., Ashok, K., Katiyar, R.S., and Marc, A.: Structural and optical properties of N-doped ZnO nanorod arrays. J. Phys. D: Appl. Phys. 42, 195402 (2009).Google Scholar
23.Yang, X.-J., Miao, X.-Y., Xu, X.-L., Xu, C.-M., Xu, J., and Liu, H.-T.: Structure, X-ray photoelectron spectroscopy and photoluminescence properties of highly ordered ZnO microrods. Opt. Mater. 27, 1602 (2005).CrossRefGoogle Scholar
24.Chu, J., Peng, X., Dasari, K., Palai, R., and Feng, P.: The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level. Mater. Res. Bull. 54, 73 (2014).CrossRefGoogle Scholar
25.Lupan, O., Chow, L., Ono, L.K., Cuenya, B.R., Chai, G., Khallaf, H., Park, S., and Schulte, A.: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. J. Phys. Chem. C 114, 12401 (2010).CrossRefGoogle Scholar
26.Zhang, R., Yin, P.-G., Wang, N., and Guo, L.: Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865 (2009).CrossRefGoogle Scholar
27.Kong, Y., Yu, D., Zhang, B., Fang, W., and Feng, S.: Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl. Phys. Lett. 78, 407 (2001).CrossRefGoogle Scholar
28.Xie, R., Sekiguchi, T., Ishigaki, T., Ohashi, N., Li, D., Yang, D., Liu, B., and Bando, Y.: Enhancement and patterning of ultraviolet emission in ZnO with an electron beam. Appl. Phys. Lett. 88, 134103 (2006).CrossRefGoogle Scholar
29.Jin, B.J., Im, S., and Lee, S.Y.: Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 366, 107 (2000).CrossRefGoogle Scholar
30.Ong, H. and Du, G.: The evolution of defect emissions in oxygen-deficient and-surplus ZnO thin films: the implication of different growth modes. J. Cryst. Growth 265, 471 (2004).CrossRefGoogle Scholar
Supplementary material: File

Hassanpour et al. supplementary material

Hassanpour et al. supplementary material 1

Download Hassanpour et al. supplementary material(File)
File 435.3 KB